Instructions to Examiners (red changed since M13)

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.

(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.

(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.

AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document “Mathematics SL: Guidance for e-marking May 2015”. It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question. All the marks will be added and recorded by RM assessor.

If a part is completely correct, (and gains all the “must be seen” marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.

- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding M mark(s), if any. An exception to this rule is when work for M1 is missing, as opposed to incorrect (see point 4).
- Where M and A marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most M marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal (see examples on next page).
Examples

<table>
<thead>
<tr>
<th></th>
<th>Correct answer seen</th>
<th>Further working seen</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$8\sqrt{2}$</td>
<td>5.65685 (incorrect decimal value)</td>
<td>Award the final A1 (ignore the further working)</td>
</tr>
<tr>
<td>2.</td>
<td>$\frac{1}{4}\sin 4x$</td>
<td>$\sin x$</td>
<td>Do not award the final A1</td>
</tr>
<tr>
<td>3.</td>
<td>$\log a - \log b$</td>
<td>$\log(a - b)$</td>
<td>Do not award the final A1</td>
</tr>
</tbody>
</table>

3 **N** marks

*If no working shown, award **N** marks for correct answers – this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award N0.*

- Do not award a mixture of **N** and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the **N** marks and the implied marks. There are times when all the marks are implied, but the **N** marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, **N** marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the **N** marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the **N** marks for the correct answer.

4 **Implied and must be seen marks**

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the **N** marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

5 **Follow through marks (only applied after an error is made)**

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.
• Within a question part, once an error is made, no further A marks can be awarded for work which uses the error, but M and R marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
• Exceptions to this rule will be explicitly noted on the markscheme.
• If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
• If the error leads to an inappropriate value (eg probability greater than 1, use of $r > 1$ for the sum of an infinite GP, $\sin \theta = 1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
• The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
• If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
• In a “show that” question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
• Where there are anticipated common errors, the FT answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted, neither should N marks be awarded for these answers.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

• If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
• If the MR leads to an inappropriate value (eg probability greater than 1, use of $r > 1$ for the sum of an infinite GP, $\sin \theta = 1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
• Miscopying of candidates’ own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

• Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
• Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.
9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say \(k = 3 \), but the marks will be for the correct value 3 – there is usually no need for the “\(k = \)”. In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of \(p \) and of \(q \), then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations – in this case the markscheme will say “must be an equation”. Accept sloppy notation in the working, where this is followed by correct working eg \(-2^2 = 4 \) where they should have written \((\frac{-2}{2})^2 = 4 \).

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \(M \) marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.
13. **Diagrams**

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first A1 is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. **Accuracy of Answers**

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as 3/0.1 (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award A0 for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show

- a truncated 6 sf value, the exact value if applicable, and the correct 3 sf answer.

Units (which are generally not required) will appear in brackets at the end.
Section A

1. (a) evidence of choosing sine rule \((M1)\)

\[
\frac{AC}{\sin(\hat{ABC})} = \frac{BC}{\sin(\hat{BAC})}
\]

correct substitution \((A1)\)

\[
e g \quad \frac{AC}{\sin 80^\circ} = \frac{10}{\sin 35^\circ}
\]

\[AC = 17.1695\]
\[AC = 17.2 \text{ (cm)}\] \(A1 \quad N2\)

[3 marks]

(b) \(\hat{ABC} = 65^\circ\) (seen anywhere) \((A1)\)

correct substitution \((A1)\)

\[
e g \quad \frac{1}{2} \times 10 \times 17.1695 \times \sin 65^\circ
\]

\[\text{area} = 77.8047\]
\[\text{area} = 77.8 \text{ (cm}^2\text{)}\] \(A1 \quad N2\)

[3 marks]

Total [6 marks]

2. (a) (i) correct substitution \((A1)\)

\[
e g \quad 6 \times 2 + 3 \times 2 + 6 \times 1 = 24\]
\[u \cdot v = 24\] \(A1 \quad N2\)

(ii) correct substitution into magnitude formula for \(u\) or \(v\) \((A1)\)

\[
e g \quad \sqrt{6^2 + 3^2 + 6^2}, \sqrt{2^2 + 2^2 + 1^2}, \text{ correct value for } |v|\]

\[|u| = 9\] \(A1 \quad N2\)

(iii) \(|v| = 3\) \(A1 \quad N1\)

[5 marks]

(b) correct substitution into angle formula \((A1)\)

\[
e g \quad \frac{24}{9 \times 3}, 0.8 \frac{475882}{0.8}, 27.26604^\circ\]

\[0.475882, 27.26604^\circ\] \(A1 \quad N2\)

[2 marks]

Total [7 marks]
3. (a) (i) evidence of set up
 \(\text{eg correct value for } a, b \text{ or } r \)
 \(a = 4.8, \ b = 1.2 \)
 \(r = 0.988064 \)
 \(r = 0.988 \)
 \((M1) \quad A1A1 \quad N3 \quad [4 \text{ marks}] \)

(b) correct substitution into their regression equation
 \(\text{eg } 4.8 \times 7 + 1.2 \)
 34.8 (millions of dollars) (accept 35 and 34800000)
 \((A1) \quad A1 \quad N2 \quad [2 \text{ marks}] \)
 \(\text{Total } [6 \text{ marks}] \)

4. valid approach to find the required term
 \(\text{eg } \binom{8}{r} x^{8-r} k^r, \text{ Pascal’s triangle to } 8^{\text{th}} \text{ row, } x^8 + 8x^7k + 28x^6k^2 + ... \)
 identifying correct term (may be indicated in expansion)
 \(\text{eg } \binom{8}{2} x^6k^2, \binom{8}{6} x^6k^2, \ r = 2 \)
 \(\text{setting up equation in } k \text{ with their coefficient/term} \)
 \(\text{eg } 28k^2x^6 = 63x^6, \binom{8}{6} k^2 = 63 \)
 \(k = \pm 1.5 \) (exact)
 \((M1) \quad A1A1 \quad N3 \quad [5 \text{ marks}] \)
5. (a)

Note: Curve must be approximately correct exponential shape (increasing and concave up). Only if the shape is approximately correct, award the following:

\(A1 \) for right end point in circle,
\(A1 \) for \(y \)-intercept in circle,
\(A1 \) for asymptotic to \(y = 2 \), (must be above \(y = 2 \)).

[3 marks]

(b) valid attempt to find \(g \)
\[f(x-3)-1, \ g(x) = e^{x+1} + 2 - 1, \ e^{x+1} , \ 2 - 1, \ sketch \]
\(g(x) = e^{x-2} + 1 \)

(\(M1 \))

[3 marks]

Total [6 marks]
6. **METHOD 1**

recognize that the distance walked each minute is a geometric sequence

\[eg \quad r = 0.9, \text{ valid use of } 0.9 \]

recognize that total distance walked is the sum of a geometric sequence

\[eg \quad S_n, a \left(\frac{1-r^n}{1-r}\right) \]

correct substitution into the sum of a geometric sequence

\[eg \quad 80 \left(\frac{1-0.9^n}{1-0.9}\right) \]

any correct equation with sum of a geometric sequence

\[eg \quad 80 \left(\frac{0.9^n - 1}{0.9 - 1}\right) = 660, 1-0.9^n = \frac{66}{80} \]

attempt to solve their equation involving the sum of a GP

\[eg \quad \text{graph, algebraic approach} \]

\[n = 16.54290788 \]

since \(n > 15 \)
he will be late

Note: Do not award the R mark without the preceding A mark.
METHOD 2

recognize that the distance walked each minute is a geometric sequence \((M1) \)

\[r = 0.9, \text{ valid use of } 0.9 \]

recognize that total distance walked is the sum of a geometric sequence \((M1) \)

\[S_n, \ a \left(\frac{1-r^n}{1-r} \right) \]

correct substitution into the sum of a geometric sequence \((A1) \)

\[80 \left(\frac{1-0.9^n}{1-0.9} \right) \]

attempt to substitute \(n = 15 \) into sum of a geometric sequence \((M1) \)

\[S_{15} \]

correct substitution \((A1) \)

\[80 \left(\frac{0.9^{15} - 1}{0.9 - 1} \right) \]

\[S_{15} = 635.287 \]

since \(S < 660 \)

he will not be there on time \(R1 \)

AG \(N0 \)

Note: Do not award the \(R \) mark without the preceding \(A \) mark.

METHOD 3

recognize that the distance walked each minute is a geometric sequence \((M1) \)

\[r = 0.9, \text{ valid use of } 0.9 \]

recognize that total distance walked is the sum of a geometric sequence \((M1) \)

\[S_n, \ a \left(\frac{1-r^n}{1-r} \right) \]

listing at least 5 correct terms of the GP \((M1) \)

15 correct terms \(A1 \)

80, 72, 64.8, 58.32, 52.488, 47.2392, 42.5152, 38.2637, 34.4373, 30.9936, 27.8942, 25.1048, 22.59436, 20.3349, 18.3014

attempt to find the sum of the terms \((M1) \)

\[S_{15}, \ 80 + 72 + 64.8 + 58.32 + 52.488 + ... + 18.301433 \]

\[S_{15} = 635.287 \]

since \(S < 660 \)

he will not be there on time \(R1 \)

AG \(N0 \)

Note: Do not award the \(R \) mark without the preceding \(A \) mark.

[7 marks]
7. attempt to set up equation
 \[f = g, \quad kx^2 + kx = x - 0.8 \]
 \[\text{eg} \]

rearranging their equation to equal zero
 \[kx^2 + kx - x + 0.8 = 0, \quad kx^2 + x(k - 1) + 0.8 = 0 \]
 \[\text{eg} \]

evidence of discriminant (if seen explicitly, not just in quadratic formula)
 \[b^2 - 4ac, \quad \Delta = (k - 1)^2 - 4k \times 0.8, \quad D = 0 \]
 \[\text{eg} \]

correct discriminant
 \[(k - 1)^2 - 4k \times 0.8, \quad k^2 - 5.2k + 1 \]
 \[\text{eg} \]

evidence of correct discriminant greater than zero
 \[k^2 - 5.2k + 1 > 0, \quad (k - 1)^2 - 4k \times 0.8 > 0, \quad \text{correct answer} \]
 \[\text{eg} \]

both correct values
 \[0.2, \quad 5 \]
 \[\text{eg} \]

correct answer
 \[k < 0.2, \quad k \neq 0, \quad k > 5 \]
 \[\text{eg} \]

[8 marks]
Section B

8. **Note:** The values of \(p \) and \(q \) found in (a) are used throughout the question. Please check FT carefully on their values.

(a) attempt to find intersection \((M1) \)

\[f = g \]

\[p = 1, \ q = 3 \] \(A1A1 \) \(N3 \) [3 marks]

(b) \(f'(p) = -1 \) \(A2 \) \(N2 \) [2 marks]

(c) (i) correct approach to find the gradient of the normal \((A1) \)

\[m_1m_2 = -1, \ -\frac{1}{f'(p)}, \text{correct value of } 1 \]

EITHER

attempt to substitute coordinates (in any order) and correct normal gradient to find \(c \) \((M1) \)

\[3 = -\frac{1}{f'(p)} \times 1 + c, \ 1 = 1 \times 3 + c \]

\[c = 2 \] \(A1 \) \(N2 \)

\[y = x + 2 \]

OR

attempt to substitute coordinates (in any order) and correct normal gradient into equation of a straight line \((M1) \)

\[y - 3 = -\frac{1}{f'(p)}(x - 1), \ y - 1 = 1 \times (x - 3) \]

correct working

\[y = (x - 1) + 3 \] \(A1 \) \(N2 \)

\[y = x + 2 \]

(ii) \((0, 2) \) \(A1 \) \(N1 \) [5 marks]

(d) appropriate approach involving subtraction \((M1) \)

\[\int_0^2 (L - g) \, dx, \ \int (3x^2 - (x + 2)) \]

substitution of their limits or function \((A1) \)

\[\int_0^2 (L - g) \, dx, \ \int ((x + 2) - 3x^2) \]

area = 1.5 \(A1 \) \(N2 \) [3 marks]

Total [13 marks]
9. **Note:** There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. In particular there are a number of ways of doing (d). Accept answers that are consistent with their working.

(a) valid approach \((M1) \)

\[\text{eg } \frac{L - \mu}{\sigma}, \text{ using a value for } \sigma, \text{ using 68\% and 95\%} \]

correct working

\[P(-1 < Z < 2), \text{ correct probabilities (0.6826... + 0.1359...)} \] \((A1) \)

\[P(50 - \sigma < L < 50 + 2\sigma) = 0.818594 \]

\[P(50 - \sigma < L < 50 + 2\sigma) = 0.819 \]

\(A1 \quad N2 \)

\[[3 \text{ marks}] \]

(b) \(z = 1.95996 \)

\[\text{correct equation } (A1) \]

\[\text{eg } \frac{53.92 - 50}{\sigma} = 1.95996, \quad \sigma = 2.00004 \]

\[\sigma = 2.00 \]

\(AG \quad N0 \)

\[[2 \text{ marks}] \]

(c) valid set up \(M1 \)

\[\text{eg } P(L > t) = 0.75, \text{ right tail, } \]

\[t = 48.6510 \]

\[t = 48.7 \text{ (do not accept 48.5 from using } z = -0.75) \]

\(A2 \quad N2 \)

\[[3 \text{ marks}] \]

continued…
Question 9 continued

(d) (i) correct approach
\(eg\) from \(t \) to 50.1, \(P(48.7 < X < 50.1), 0.269942 \)
recognize conditional probability (seen anywhere, including in correct working)
\(eg\) \(P(A|B) \)
correct substitution
\(eg\) \(\frac{P(48.7 < X < 50.1)}{P(X > 48.7)}, \frac{0.269942}{0.75} \)
0.359923
0.360
\(A1 \) \(N3 \)

(ii) \(P(X \geq 2) \)
attempt to find \(P(X \geq 2) \)
\(eg\) \(1 - P(X = 0) - P(X = 1), P(X = 2) + P(X = 3) + \ldots \)
recognize binomial distribution
\(eg\) \(X \sim B(n, p) \)
0.923741
0.924
\(A1 \) \(N2 \)

[8 marks]

Total [16 marks]
10. (a) area of ABCD = AB^2 (seen anywhere) \[\text{choose cosine rule to find a side of the square}\]
\[eg \quad a^2 = b^2 + c^2 - 2bc \cos \theta\]
\[\text{correct substitution (for triangle AOB)}\]
\[eg \quad r^2 + r^2 - 2 \times r \times r \cos \theta, \quad OA^2 + OB^2 - 2 \times OA \times OB \cos \theta\]
\[\text{correct working for } AB^2\]
\[eg \quad 2r^2 - 2r^2 \cos \theta\]
\[\text{area} = 2r^2 (1 - \cos \theta)\]

Note: Award no marks if the only working is \[2r^2 - 2r^2 \cos \theta\].

\[4 \text{ marks}\]

(b) (i) \[\frac{1}{2} \alpha r^2 \quad (\text{accept } 2r^2 (1 - \cos \alpha))\]

(ii) correct equation in one variable \[\text{(A1)}\]
\[eg \quad 2(1 - \cos \alpha) = \frac{1}{2} \alpha\]
\[\alpha = 0.511024\]
\[\alpha = 0.511 \quad (\text{accept } \theta = 0.511)\]

Note: Award A1 for $\alpha = 0.511$ and additional answers.

\[4 \text{ marks}\]

continued…
Question 10 continued

(c) **Note:** In this part, accept θ instead of β, and the use of equations instead of inequalities in the working.

- **Attempt to find R**

 eg subtraction of areas, square segment

- **Correct expression for segment area**

 eg $\frac{1}{2} \beta r^2 - \frac{1}{2} r^2 \sin \beta$

- **Correct expression for R**

 eg $2r^2 (1 - \cos \beta) - \left(\frac{1}{2} \beta r^2 - \frac{1}{2} r^2 \sin \beta \right)$

- **Correct inequality**

 eg $2r^2 (1 - \cos \beta) - \left(\frac{1}{2} \beta r^2 - \frac{1}{2} r^2 \sin \beta \right) > 2 \left(\frac{1}{2} \beta r^2 \right)$

- **Correct inequality in terms of angle only**

 eg $2 (1 - \cos \beta) - \left(\frac{1}{2} \beta - \frac{1}{2} \sin \beta \right) > \beta$

- **Attempt to solve their inequality, must represent $R >$ twice sector**

 eg sketch, one correct value

Note: Do not award the second $(M1)$ unless the first $(M1)$ for attempting to find R has been awarded.

- **Both correct values** 1.30573 and 2.67369

- **Correct inequality** $1.31 < \beta < 2.67$

[8 marks]

Total [16 marks]