Chapter 16
PROPERTIES OF CURVES

EXERCISE 16A

1. We seek the tangent to \(y = x - 2x^2 + 3 \) at \(x = 2 \).
 When \(x = 2 \), \(y = 2 - 2(2)^2 + 3 = -3 \).
 \(\therefore \) the point of contact is \((2, -3)\).
 Now \(\frac{dy}{dx} = 1 - 4x \), so at \(x = 2 \),
 \[\frac{dy}{dx} = 1 - 8 = -7 \]
 \(\therefore \) the tangent has equation
 \[\frac{y - (-3)}{x - 2} = -7 \]
 \(\therefore \) \(y + 3 = -7(x - 2) \)
 \[\therefore \] \(y = -7x + 14 - 3 \)
 \[\therefore \] \(y = -7x + 11 \)

2. We seek the tangent to \(y = x^3 - 5x \) at \(x = 1 \).
 When \(x = 1 \), \(y = 1^3 - 5(1) = -4 \).
 \(\therefore \) the point of contact is \((1, -4)\).
 Now \(\frac{dy}{dx} = 3x^2 - 5 \), so at \(x = 1 \),
 \[\frac{dy}{dx} = 3 - 5 = -2 \]
 \(\therefore \) the tangent has equation
 \[\frac{y - (-4)}{x - 1} = -2 \]
 \(\therefore \) \(y + 4 = -2x + 2 \)
 \[\therefore \] \(y = -2x - 2 \)

3. We seek the tangent to \(y = \frac{3}{x} - \frac{1}{x^2} = 3x^{-1} - x^{-2} \) at \((-1, -4)\).
 Now \(\frac{dy}{dx} = -3x^{-2} + 2x^{-3} \)
 \(= -\frac{3}{x^2} + \frac{2}{x^3} \) so at \((-1, -4)\).
 \[\frac{dy}{dx} = -\frac{3}{(-1)^2} + \frac{2}{(-1)^3} \]
 \(= -3 - 2 \)
 \(= -5 \)
 \(\therefore \) the tangent has equation
 \[\frac{y - (-4)}{x - (-1)} = -5 \]
 \(\therefore \) \(y + 4 = -5x - 5 \)
 \[\therefore \] \(y = -5x - 9 \)

b. We seek the tangent to \(y = \sqrt{x^2 + 1} = x^2 + 1 \) at \(x = 4 \).
 When \(x = 4 \), \(y = \sqrt{4^2 + 1} = 3 \).
 \(\therefore \) the point of contact is \((4, 3)\).
 Now \(\frac{dy}{dx} = \frac{1}{2\sqrt{x}} \), so at \(x = 4 \),
 \[\frac{dy}{dx} = \frac{1}{2\sqrt{4}} = \frac{1}{4} \]
 \(\therefore \) the tangent has equation
 \[\frac{y - 3}{x - 4} = \frac{1}{4} \]
 \(\therefore \) \(4y - 12 = x - 4 \)
 \[\therefore \] \(4y = x + 8 \)

d. We seek the tangent to \(y = \frac{4}{\sqrt{x}} \) at \((1, 4)\).
 Now \(y = \frac{4}{\sqrt{x}} = 4x^{-\frac{1}{2}} \).
 \(\therefore \) \(\frac{dy}{dx} = -2x^{-\frac{3}{2}} \) so at \(x = 1 \),
 \[\frac{dy}{dx} = -2 \left(1^{-\frac{3}{2}}\right) = -2 \]
 \(\therefore \) the tangent has equation
 \[\frac{y - 4}{x - 1} = -2 \]
 \(\therefore \) \(y - 4 = -2x + 2 \)
 \[\therefore \] \(y = -2x + 6 \)

f. We seek the tangent to \(y = \frac{3x^2 - \frac{1}{x}}{x} = 3x^2 - x^{-1} \) at \(x = -1 \).
 When \(x = -1 \), \(y = 3(-1)^2 - (-1) = 4 \).
 \(\therefore \) the point of contact is \((-1, 4)\).
 Now \(\frac{dy}{dx} = 6x + x^{-2} \)
 \(= 6x + \frac{1}{x^2} \) so at \(x = -1 \),
 \[\frac{dy}{dx} = 6(-1) + \frac{1}{(-1)^2} = -5 \]
 \(\therefore \) the tangent has equation
 \[\frac{y - 4}{x - (-1)} = -5 \]
 \(\therefore \) \(y - 4 = -5x - 5 \)
 \[\therefore \] \(y = -5x - 1 \)
2 a We seek the normal to \(y = x^2 \) at (3, 9).

Now \(\frac{dy}{dx} = 2x \) so at \(x = 3 \),
\[
\frac{dy}{dx} = 2(3) = 6 = \frac{1}{6}
\]
\[\therefore \text{the normal at (3, 9) has gradient } -\frac{1}{6}, \]
so the equation of the normal is
\[
\frac{y - 9}{x - 3} = -\frac{1}{6}
\]
\[\therefore 6y - 54 = -x + 3 \]
\[\therefore 6y = -x + 57 \]

b We seek the normal to \(y = x^3 - 5x + 2 \) at \(x = -2 \).

When \(x = -2 \), \(y = (-2)^3 - 5(-2) + 2 = 4 \)
\[\therefore \text{and the point of contact is } (-2, 4) \]
Now \(\frac{dy}{dx} = 3x^2 - 5 \) so at \(x = -2 \),
\[
\frac{dy}{dx} = 3(-2)^2 - 5 = 7
\]
\[\therefore \text{the normal at } (-2, 4) \text{ has gradient } -\frac{1}{7}, \]
so the equation of the normal is
\[
\frac{y - 4}{x - (-2)} = -\frac{1}{7}
\]
\[\therefore 7y - 28 = -(x + 2) \]
\[\therefore 7y = -x + 26 \]

c We seek the normal to \(y = \frac{5}{\sqrt{x}} - \sqrt{x} \) at (1, 4).

Now \(y = 5x^{-\frac{1}{2}} - x^{\frac{1}{2}} \)
\[\therefore \frac{dy}{dx} = -\frac{5}{2} x^{-\frac{3}{2}} - \frac{1}{2} x^{-\frac{1}{2}} \] so at \(x = 1 \),
\[
\frac{dy}{dx} = -\frac{5}{2} - \frac{1}{2} = -3
\]
\[\therefore \text{the normal at (1, 4) has gradient } \frac{1}{3}, \]
so the equation of the normal is
\[
\frac{y - 4}{x - 1} = \frac{1}{3}
\]
\[\therefore 3y - 12 = x - 1 \]
\[\therefore 3y = x + 11 \]

d We seek the normal to \(y = 8\sqrt{x} - \frac{1}{x^2} \) at \(x = 1 \).

When \(x = 1 \), \(y = 8\sqrt{1} - \frac{1}{1^2} = 7 \)
\[\therefore \text{the point of contact is } (1, 7) \]
Now \(y = 8\sqrt{x} - \frac{1}{x^2} = 8x^{\frac{1}{2}} - x^{-2} \)
\[\therefore \frac{dy}{dx} = 4x^{-\frac{1}{2}} + 2x^{-3} \] so at \(x = 1 \),
\[
\frac{dy}{dx} = 4 + 2 = 6
\]
\[\therefore \text{the normal at (1, 7) has gradient } -\frac{1}{6}, \]
so the equation of the normal is
\[
\frac{y - 7}{x - 1} = -\frac{1}{6}
\]
\[\therefore 6y - 42 = -x + 1 \]
\[\therefore 6y = -x + 43 \]

3 a \[y = 2x^3 + 3x^2 - 12x + 1 \]
\[\therefore \frac{dy}{dx} = 6x^2 + 6x - 12 \]
Horizontal tangents have gradient = 0
so \(6x^2 + 6x - 12 = 0 \)
\[\therefore x^2 + x - 2 = 0 \]
\[\therefore (x + 2)(x - 1) = 0 \]
\[\therefore x = -2 \text{ or } x = 1 \]
Now at \(x = -2 \),
\[y = 2(-2)^3 + 3(-2)^2 - 12(-2) + 1 \]
\[= 21 \]
and at \(x = 1 \),
\[y = 2(1)^3 + 3(1)^2 - 12(1) + 1 \]
\[= -6 \]
\[\therefore \text{the points of contact are } (-2, 21) \text{ and } (1, -6) \]
\[\therefore \text{the tangents are } y = 21 \text{ and } y = -6 \]

b Now \(y = 2\sqrt{x} + \frac{1}{\sqrt{x}} = 2x^{\frac{1}{2}} + x^{-\frac{1}{2}} \)
\[\therefore \frac{dy}{dx} = x^{-\frac{1}{2}} - \frac{1}{2} x^{-\frac{3}{2}} = \frac{1}{\sqrt{x}} - \frac{1}{2x^{\frac{3}{2}}} \]
Horizontal tangents have gradient = 0
\[\therefore \frac{1}{\sqrt{x}} - \frac{1}{2x^{\frac{3}{2}}} = 0 \]
\[\therefore 2x - 1 = 0 \]
\[\therefore x = \frac{1}{2} \]
Now at \(x = \frac{1}{2} \),
\[y = 2\sqrt{\frac{1}{2}} + \frac{1}{\sqrt{\frac{1}{2}}} = \frac{2(\frac{1}{2}) + 1}{\sqrt{\frac{1}{2}}} = \frac{2}{\sqrt{\frac{1}{2}}} = 2\sqrt{2} \]
\[\therefore \text{the only horizontal tangent touches at the curve at } \left(\frac{1}{2}, 2\sqrt{2}\right) \]
Now \(y = 2x^3 + kx^2 - 3 \)

\[
\frac{dy}{dx} = 6x^2 + 2kx
\]

When \(x = 2 \), \(\frac{dy}{dx} = 4 \)

\[
6(2)^2 + 2k(2) = 4
\]

\[
24 + 4k = 4
\]

\[4k = -20\]

\[k = -5\]

Now \(y = 1 - 3x + 12x^2 - 8x^3 \)

\[
\frac{dy}{dx} = -3 + 24x - 24x^2
\]

When \(x = 1 \), \(\frac{dy}{dx} = -3 + 24 - 24 = -3 \)

\[\text{the tangent at (1, 2) has gradient } -3\]

The tangents to the curve have gradient \(-3\) when \(-3 + 24x - 24x^2 = -3\)

\[
24x^2 - 24x = 0
\]

\[
24x(x - 1) = 0
\]

\[\text{when } x = 0 \text{ or } x = 1\]

So the other \(x \)-value for which the tangent to the curve has gradient \(-3\) is \(x = 0 \), and when \(x = 0 \), \(y = 1 - 0 + 0 - 0 = 1 \)

\[\text{the tangent to the curve at (0, 1) is parallel to the tangent at (1, 2).}\]

This tangent has equation \[
\frac{y - 1}{x} = -3
\]

or \(y = -3x + 1 \).

Now \(y = \sqrt{x} + \frac{b}{\sqrt{x}} = ax^{\frac{1}{2}} + bx^{-\frac{1}{2}} \)

\[
\frac{dy}{dx} = \frac{a}{2}x^{-\frac{1}{2}} - \frac{b}{2}x^{-\frac{3}{2}}
\]

At \(x = 4 \), \(\frac{dy}{dx} = \frac{a}{2} \left(\frac{4}{2} \right) - \frac{b}{2} \left(\frac{1}{2} \right) \)

\[= \frac{a}{4} - \frac{b}{16}\]

\[\text{the gradient of the tangent to the curve at } x = 4 \text{ will be } \frac{a}{4} - \frac{b}{16} = \frac{4a - b}{16}\]

However the equation of the \textit{normal} is \(4x + y = 22 \) or \(y = -4x + 22 \).

\[\text{the normal has gradient } -4\]

\[\text{the tangent has gradient } \frac{1}{4}, \text{ and so } \]

\[\frac{4a - b}{16} = \frac{1}{4}\]

\[4a - b = 4\]

\[b = 4a - 4 \] (1)

Also, at \(x = 4 \) the normal line intersects the curve.

\[a\sqrt{4} + \frac{b}{\sqrt{4}} = -4(4) + 22\]

\[2a + \frac{b}{2} = 6\]

Consequently, \(2a + \frac{4a - 4}{2} = 6 \) \{using (1)\}

\[2a + 2a - 2 = 6\]

\[4a = 8\]

\[a = 2\]

and so \(b = 4(2) - 4 = 4 \) \{from (1)\}

\[
\begin{align*}
\frac{dy}{dx} &= 4x \\
\text{at the point where } x &= a, \quad \frac{dy}{dx} = 4a \\
\text{the gradient of the tangent at the point } x &= a \text{ is } 4a. \\
\text{Also, at } x &= a, \quad y = 2a^2 - 1. \\
\text{the tangent has equation } y &= (2a^2 - 1) \\
&= 4a \\
&= 2a^2 + 1 = 4a(x - a) \\
&= 2a^2 + 1 = 4ax - 4a^2 \\
&= 4ax - y = 2a^2 + 1
\end{align*}
\]
5 a \(y = \sqrt{2x + 1} \)

When \(x = 4 \), \(y = \sqrt{2(4) + 1} = 3 \), so the point of contact is \((4, 3)\).

Now \(\frac{dy}{dx} = \frac{1}{2}(2x + 1)^{-\frac{1}{2}}(2) = \frac{1}{\sqrt{2x + 1}} \)

\[\therefore \text{at } x = 4, \quad \frac{dy}{dx} = \frac{1}{\sqrt{2(4) + 1}} = \frac{1}{3} \]

\(\therefore \text{the tangent has equation } \frac{y - 3}{x - 4} = \frac{1}{3} \)

or \(3y = x + 5 \).

b \(y = \frac{1}{2 - x} = (2 - x)^{-1} \)

\[\therefore \text{at } x = -1, \quad y = \frac{1}{2 - (-1)} = \frac{1}{3} \]

So the point of contact is \((-1, \frac{1}{3})\).

Now \(\frac{dy}{dx} = -(2 - x)^{-2}(-1) = \frac{1}{(2 - x)^2} \)

\[\therefore \text{at } x = -1, \quad \frac{dy}{dx} = \frac{1}{(2 - (-1))^2} = \frac{1}{9} \]

\(\therefore \text{the tangent has equation } \frac{y - \frac{1}{3}}{x - (-1)} = \frac{1}{9} \)

\[\therefore 9y - 3 = x + 1 \]

\[\therefore 9y = x + 4 \]

c We seek the tangent to \(f(x) = \frac{x}{1 - 3x} \) at \((-1, -\frac{1}{4})\).

\(f(x) \) is a quotient where \(u = x \) and \(v = 1 - 3x \)

\(\therefore u' = 1 \) and \(v' = -3 \)

Now \(f'(x) = \frac{u'v - uv'}{v^2} \) \{quotient rule\}

\[\therefore f'(x) = \frac{1(1 - 3x) - x(-3)}{(1 - 3x)^2} = \frac{1}{(1 - 3x)^2} \]

\[\therefore f'(-1) = \frac{1}{(1 - 3(-1))^2} = \frac{1}{16} \]

\(\therefore \text{the tangent has equation } \frac{y - (-\frac{1}{4})}{x - (-1)} = \frac{1}{16} \)

\[\therefore 16y + 4 = x + 1 \]

\[\therefore 16y = x - 3 \]

d We seek the tangent to \(f(x) = \frac{x^2}{1 - x} \) at \((2, -4)\).

\(f(x) \) is a quotient where \(u = x^2 \) and \(v = 1 - x \)

\(\therefore u' = 2x \) and \(v' = -1 \)

Now \(f'(x) = \frac{u'v - uv'}{v^2} \) \{quotient rule\}

\[\therefore f'(x) = \frac{2x(x - 1) - x^2(-1)}{(1 - x)^2} = \frac{2x - 2x^2 + x^2}{(1 - x)^2} = \frac{2x - x^2}{(1 - x)^2} \]

\[\therefore f'(2) = \frac{2(2) - 4}{(1 - 2)^2} = \frac{0}{1} = 0 \]

As the tangent has gradient 0, it is horizontal.

\(\therefore \text{its equation is } y = c \)

Since the contact point is \((2, -4)\), the tangent has equation \(y = -4 \).

6 a We seek the normal to \(y = \frac{1}{(x^2 + 1)^2} \) at \((1, \frac{1}{4})\).

As \(y = (x^2 + 1)^{-2} \),

\[\frac{dy}{dx} = -2(x^2 + 1)^{-3}(2x) = \frac{-4x}{(x^2 + 1)^3} \]

\[\therefore \text{at } x = 1, \quad \frac{dy}{dx} = \frac{-4}{(1 + 1)^3} = -\frac{4}{8} = -\frac{1}{2} \]

\(\therefore \text{the normal at } (1, \frac{1}{4}) \) has gradient 2.

So the equation of the normal is

\[\frac{y - \frac{1}{4}}{x - 1} = 2 \]

\[\therefore y - \frac{1}{4} = 2x - 2 \]

\[\therefore y = 2x - \frac{7}{4} \]

b \(y = \frac{1}{\sqrt{3 - 2x}} \)

\[\therefore \text{at } x = -3, \quad y = \frac{1}{\sqrt{3 - 2(-3)}} = \frac{1}{3} \]

\(\therefore \text{the point of contact is } (-3, \frac{1}{3}) \)

Now \(y = (3 - 2x)^{-\frac{1}{2}} \)

\[\frac{dy}{dx} = -\frac{1}{2}(3 - 2x)^{-\frac{3}{2}}(-2) = (3 - 2x)^{-\frac{3}{2}} \]

\[\therefore \text{at } x = -3, \quad \frac{dy}{dx} = (3 - 2(-3))^{-\frac{3}{2}} = 9^{-\frac{3}{2}} = 3^{-3} = \frac{1}{27} \]

\(\therefore \text{the normal at } (-3, \frac{1}{3}) \) has gradient \(-27\).

So the equation of the normal is

\[\frac{y - \frac{1}{3}}{x - (-3)} = -27 \]

\[\therefore y - \frac{1}{3} = -27(x + 3) \]

\[\therefore y = -27x - \frac{82}{3} \]
c \[f(x) = \sqrt{x}(1 - x)^2 \]
Since \[f(4) = \sqrt{4}(1 - 4)^2 = 18, \]
the point of contact is \((4, 18)\).
Now \(f(x)\) is a product where
\[u = x^{\frac{1}{2}} \quad \text{and} \quad v = (1 - x)^2 \]
∴ \[u' = \frac{1}{2}x^{-\frac{1}{2}} \quad \text{and} \quad v' = 2(1 - x) \]
\[= -2(1 - x) \]
Now \(f'(x) = u'v + uv'\) \{product rule\}
\[\therefore f'(x) = \frac{1}{2}x^{-\frac{1}{2}}(1 - x)^2 - x^{\frac{1}{2}}2(1 - x) \]
\[= \frac{1}{2}(9) - 2(2)(-3) = \frac{57}{4} \]
∴ the normal at \((4, 18)\) has gradient \(-\frac{4}{57}\).
So, the equation of the normal is
\[\frac{y - 18}{x - 4} = -\frac{4}{57} \]
∴ \[57(y - 18) = -4(x - 4) \]
∴ \[57y = -4x + 1042 \]

\[\text{d} \]
\[f(x) = \frac{x^2 - 1}{2x + 3} \]
Since \[f(-1) = \frac{(-1)^2 - 1}{2(-1) + 3} = \frac{0}{1} = 0 \]
the point of contact is \((-1, 0)\).
Now \(f(x)\) is a quotient where
\[u = x^2 - 1 \quad \text{and} \quad v = 2x + 3 \]
∴ \[u' = 2x \quad \text{and} \quad v' = 2 \]
Now \(f'(x) = \frac{uv' - vu'}{v^2}\)
\[\therefore f'(x) = \frac{2x(2x + 3) - (x^2 - 1)(2)}{(2x + 3)^2} \]
\[= \frac{2(-1)(-2 + 3) - ((-1)^2 - 1)(2)}{(2(-1) + 3)^2} \]
\[= -2(1)^2 = -2 \]
∴ the normal at \((-1, 0)\) has gradient \(\frac{1}{2}\).
So, the equation of the normal is
\[\frac{y - 0}{x - (-1)} = \frac{1}{2} \]
or \[2y = x + 1 \]

7 The tangent has equation \(3x + y = 5\) or \(y = -3x + 5\)
∴ the tangent has gradient \(-3\) \(\ldots (1)\)
Also, at \(x = -1, y = -3(-1) + 5 = 8\)
∴ the tangent contacts the curve at \((-1, 8)\) \(\ldots (2)\)
Now \(y = a(1 - bx)^{\frac{1}{2}}, \text{ so } \frac{dy}{dx} = \frac{1}{2}a(1 - bx)^{-\frac{1}{2}}(-b)\)
∴ \[\frac{3}{2} = \frac{1}{2}a(1 + b)^{-\frac{1}{2}}(-b) \quad \{\text{using (1)}\} \]
∴ \[6 = \frac{ab}{\sqrt{1 + b}} \quad \ldots (3)\]
Using (2), \((-1, 8)\) must lie on the curve \[y = a\sqrt{1 - bx} \quad \quad (4)\]
∴ \[\frac{6\sqrt{1 + b}}{b} = \frac{8}{\sqrt{1 + b}} \quad \{\text{equating as in (3) and (4)}\}\]
∴ \[6(1 + b) = 8b \]
∴ \[6 + 6b = 8b \]
∴ \[b = 3 \quad \text{and} \quad a = \frac{8}{\sqrt{4}} = 4 \]

8 \[a \]
\[f(x) = e^{-x}\]
∴ \[f(1) = e^{-1}\]
∴ the point of contact is \((1, \frac{1}{e})\).
Now \(f'(x) = -e^{-x}\)
∴ \[f'(1) = -e^{-1} = -\frac{1}{e}\]
So, the gradient of the tangent is \(-\frac{1}{e}\)
∴ the tangent has equation \[\frac{y - \frac{1}{e}}{x - 1} = -\frac{1}{e} \]
∴ \[e(y - \frac{1}{e}) = -(x - 1) \]
∴ \[ey - 1 = -x + 1 \]
∴ \[x + ey = 2 \quad \text{or} \quad y = -\frac{1}{e}x + \frac{2}{e} \]
\[y = \ln(2-x) \]
so when \(x = -1 \), \(y = \ln 3 \)
\[\therefore \text{the point of contact is } (-1, \ln 3). \]
\[\therefore \text{the tangent has equation} \quad \frac{y - \ln 3}{x + 1} = -\frac{1}{3} \]
Now \[\frac{dy}{dx} = \frac{-1}{2-x} \]
\[\therefore \text{when } x = -1, \quad \frac{dy}{dx} = \frac{-1}{2-(-1)} = -\frac{1}{3} \]
\[\therefore 3(y - \ln 3) = -(x + 1) \quad \therefore y - 3\ln 3 = -x - 1 \]
So, the gradient of the tangent is \(-\frac{1}{3}\).

ej \[y = \ln \sqrt{x} \quad \therefore \text{when } y = -1, \quad -1 = \frac{1}{2} \ln x \]
\[= \ln x^{\frac{1}{2}} \quad \therefore \ln x = -2 \]
\[= \frac{1}{2} \ln x \quad \therefore x = e^{-2} \]
\[\therefore x = \frac{1}{e^2} \quad \therefore \text{the point of contact is } \left(\frac{1}{e^2}, -1 \right) \]
Now \[\frac{dy}{dx} = \frac{1}{2x} = \frac{1}{2e^{-2}} = \frac{e^2}{2} \]
\[\therefore \text{the tangent has gradient } \frac{e^2}{2} \text{ and the normal has gradient } -\frac{2}{e^2} \]
\[\therefore \text{the normal has equation} \quad \frac{y + 1}{x - \frac{1}{e^2}} = -\frac{2}{e^2} \]
\[\therefore e^2(y + 1) = -2 \left(x - \frac{1}{e^2} \right) \]
\[\therefore e^2y + e^2 = -2x + \frac{2}{e^2} \]
\[\therefore 2x + e^2y = \frac{2}{e^2} - e^2 \quad \text{or} \quad y = -\frac{2}{e^2} x + \frac{2}{e^4} - 1 \]

\[y = \frac{\cos x}{1 + \sin x} \quad \therefore \frac{dy}{dx} = \frac{(-\sin x)(1 + \sin x) - \cos x(\cos x)}{(1 + \sin x)^2} \]
\[= \frac{-\sin x - \sin^2 x - \cos^2 x}{(1 + \sin x)^2} \]
\[= \frac{-\sin x - \sin^2 x}{(1 + \sin x)^2} \quad \{ \sin^2 x + \cos^2 x = 1 \} \]
\[= \frac{-(1 + \sin x)}{(1 + \sin x)^2} \]
\[= \frac{-1}{1 + \sin x} \]
Since \(\frac{-1}{1 + \sin x} \) never equals 0, there are no horizontal tangents.

10 \(a \quad y = \sin x \quad \therefore \frac{dy}{dx} = \cos x \quad b \quad y = \tan x \quad \therefore \frac{dy}{dx} = \frac{1}{\cos^2 x} \)
\[\text{When } x = 0, \quad \frac{dy}{dx} = \cos 0 = 1 \quad \text{When } x = 0, \quad \frac{dy}{dx} = \frac{1}{\cos^2 0} = 1 \]
\[\therefore \text{the tangent has equation} \quad \frac{y - 0}{x - 0} = 1 \quad \therefore \text{the tangent has equation} \quad \frac{y - 0}{x - 0} = 1 \]
\[\text{or } y = x \quad \text{or } y = x \]
\[y = \cos x \quad \therefore \quad \frac{dy}{dx} = -\sin x \]

When \(x = \frac{\pi}{6} \), \(y = \frac{\sqrt{3}}{2} \)

and \(\frac{dy}{dx} = -\sin \left(\frac{\pi}{6} \right) = -\frac{1}{2} \)

So, the normal has gradient 2,

and its equation is \(\frac{y - \frac{\sqrt{3}}{2}}{x - \frac{\pi}{6}} = 2 \)

\[\therefore \quad y - \frac{\sqrt{3}}{2} = 2x - \frac{\pi}{3} \]

\[\therefore \quad 2x - y = \frac{\pi}{3} - \frac{\sqrt{3}}{2} \]

\[\text{Consider the tangent to } y = x^3 \text{ at } x = 2. \]

When \(x = 2 \), \(y = 2^3 = 8 \) so the point of contact is \((2, 8)\).

Now \(\frac{dy}{dx} = 3x^2 \) and so at \(x = 2 \),

\[\frac{dy}{dx} = 3(2)^2 = 12 \]

\[\therefore \quad \text{the tangent at } (2, 8) \text{ has gradient 12 and} \]

its equation is \(\frac{y - 8}{x - 2} = 12 \)

\[\therefore \quad y - 8 = 12x - 24 \]

\[\therefore \quad y = 12x - 16 \]

\[\therefore \quad \text{the tangent meets the curve where} \]

\[12x - 16 = x^3 \]

\[\therefore \quad x^3 - 12x + 16 = 0 \]

Because the tangent touches the curve at \(x = 2 \), there must be a repeated solution at this point.

\[(x - 2)^2 \] must be a factor of this cubic

\[(x - 2)(x + 4) = 0 \]

\[\therefore \quad \text{the tangent meets the curve again when} \]

\(x = -4 \).

When \(x = -4 \), \(y = (-4)^3 = -64 \)

\[\therefore \quad \text{the tangent meets the curve again at} \]

\((-4, -64) \).

\[f(x) = x^2 + \frac{4}{x^3} \]

\[\therefore \quad f'(x) = 2x - 2 \times \frac{4}{x^3} \]

\[\therefore \quad f''(x) = 2x - \frac{8}{x^3} \]

\[\text{Horizontal tangents have gradient 0, so} \]

\[2x - \frac{8}{x^3} = 0 \]

\[\therefore \quad 2x^4 = 8 \]

\[\therefore \quad x^4 = 4 \]

\[\therefore \quad x = \pm \sqrt{2} \]

\[y = \frac{1}{\sin(2x)} = (\sin(2x))^{-1} \]

\[\therefore \quad \frac{dy}{dx} = -1(\sin(2x))^{-2} \times 2 \cos(2x) \]

\[= -\frac{2 \cos(2x)}{(\sin(2x))^2} \]

When \(x = \frac{\pi}{4}, y = 1 \)

and \(\frac{dy}{dx} = -\frac{2 \cos(\frac{\pi}{4})}{(\sin(\frac{\pi}{4}))^2} = 0 \)

\[\therefore \quad \text{the gradient of the normal is undefined, so the normal is} \]

\(x = \frac{\pi}{2} \).

\[\text{Consider the tangent to} \]

\[y = -x^3 + 2x^2 + 1 \text{ at } x = -1. \]

When \(x = -1 \), \(y = -(1)^3 + 2(-1)^2 + 1 = 4 \)

and so the point of contact is \((-1, 4)\).

Now \(\frac{dy}{dx} = -3x^2 + 4x \) and so at \(x = -1 \),

\[\frac{dy}{dx} = -3(-1)^2 + 4(-1) = -7 \]

\[\therefore \quad \text{the tangent at } (-1, 4) \text{ has gradient } -7 \]

and its equation is \(\frac{y - 4}{x - (-1)} = -7 \)

\[\therefore \quad y - 4 = -7(x + 1) \]

\[\therefore \quad y = -7x - 3 \]

\[\therefore \quad \text{the tangent meets the curve where} \]

\[-7x - 3 = -x^3 + 2x^2 + 1 \]

\[\therefore \quad x^3 - 2x^2 - 7x - 4 = 0 \]

Because the tangent touches the curve at \(x = -1 \), there must be a repeated solution at this point.

\[(x + 1)^2 \] must be a factor of this cubic

\[(x + 1)(x - 4) = 0 \]

\[\therefore \quad \text{the tangent meets the curve again when} \]

\(x = 4 \).

When \(x = 4 \), \(y = -(4)^3 + 2(4)^2 + 1 = -64 + 32 + 1 = -31 \)

\[\therefore \quad \text{the tangent meets the curve again at} \]

\((4, -31) \).

\[f(x) = x^2 + \frac{4}{x^3} \]

\[\therefore \quad f'(-\sqrt{2}) = (-\sqrt{2})^2 + \frac{4}{(-\sqrt{2})^3} = 2 + \frac{4}{2} = 4 \]

\[\therefore \quad \text{the horizontal tangent at } (-\sqrt{2}, 4) \text{ is} \]

\(y = 4. \)

When \(x = \sqrt{2}, \)

\[f(\sqrt{2}) = (\sqrt{2})^2 + \frac{4}{(\sqrt{2})^3} = 2 + \frac{4}{2} = 4 \]

\[\therefore \quad \text{the horizontal tangent at } (\sqrt{2}, 4) \text{ is} \]

\(y = 4. \)

\[\therefore \quad \text{the tangents are the same line because they have the same equation.} \]
13 \[y = x^2e^x \] so when \(x = 1 \), \(y = e \)

\[\therefore \text{ the point of contact is } (1, e). \]

\[\text{The tangent cuts the } x\text{-axis when } y = 0 \]
\[\therefore 3ex = 2e \]
\[\therefore x = \frac{2}{3} \]

\[\text{and the } y\text{-axis when } x = 0 \]
\[\therefore y = 2e \]
\[\therefore y = -2e \]
\[\therefore 3ex - y = 2e \]

So, \(A \) is \(\left(\frac{2}{3}, 0 \right) \) and \(B \) is \((0, -2e) \).

14 a Consider the tangent to \(y = x^2 - x + 9 \) at \(x = a \).

When \(x = a \), \(y = a^2 - a + 9 \), so the point of contact is \((a, a^2 - a + 9) \).

\[\text{Now } \frac{dy}{dx} = 2x - 1 \text{ and so at } x = a, \frac{dy}{dx} = 2a - 1 \]

\[\therefore \text{the gradient of the tangent at } (a, a^2 - a + 9) \text{ is } 2a - 1 \]

\[\therefore \text{the equation of the tangent is } \frac{y - (a^2 - a + 9)}{x - a} = 2a - 1 \]

\[\therefore y - (a^2 - a + 9) = (2a - 1)(x - a) \]
\[\therefore y = (2a - 1)x - 2a^2 + a + a^2 - a + 9 \]
\[\therefore y = (2a - 1)x - a^2 + 9 \] (1)

But this tangent passes through \((0, 0)\), so \(0 = a^2 - 9\)

\[\therefore (a + 3)(a - 3) = 0 \]
\[\therefore a = \pm 3 \]

\[\therefore \text{the tangents are: } \text{At } a = 3, \ y = (2(3) - 1)x - 3^2 + 9 \{\text{from (1)}\} \]
\[\therefore y = 5x, \text{ with contact at } (3, 15). \]

At \(a = -3 \), \(y = (2(-3) - 1)x - (-3)^2 + 9 \{\text{from (1)}\} \]
\[\therefore y = -7x, \text{ with contact at } (-3, 21). \]

b Let \((a, a^3) \) lie on \(y = x^3 \).

\[\text{Now } \frac{dy}{dx} = 3x^2, \text{ so at } x = a, \frac{dy}{dx} = 3a^2 \]

\[\therefore \text{the gradient of the tangent at } (a, a^3) \text{ is } 3a^2 \]

\[\therefore \text{the equation of the tangent is } \frac{y - a^3}{x - a} = 3a^2 \text{ or } y - a^3 = (3a^2)(x - a) \]

But this tangent passes through \((-2, 0)\), so \(0 - a^3 = 3a^2(-2 - a)\)

\[\therefore -a^3 = -6a^2 - 3a^3 \]
\[\therefore 2a^3 + 6a^2 = 0 \]
\[\therefore 2a^2(a + 3) = 0 \]
\[\therefore a = 0 \text{ or } -3 \]

If \(a = 0 \), the tangent equation is \(y = 0 \), with contact point \((0, 0)\).

If \(a = -3 \), the tangent equation is \(y - (-27) = 27(x + 3) \)
\[\therefore y = 27x + 54, \text{ with contact point } (-3, -27). \]

c Let \((a, \sqrt{a}) \) lie on \(y = \sqrt{x} \).

\[\text{Now } \frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{a}}, \text{ so at } x = a, \frac{dy}{dx} = \frac{1}{2\sqrt{a}} \]

\[\therefore \text{the gradient of the tangent at } (a, \sqrt{a}) \text{ is } \frac{1}{2\sqrt{a}} \]

and the gradient of the normal at this point is \(-2\sqrt{a}\).
\[\frac{y - \sqrt{a}}{x - a} = -2\sqrt{a} \]

or \[y - \sqrt{a} = -2\sqrt{a}(x - a). \]

But this normal passes through \((4, 0)\), so \[0 - \sqrt{a} = -2\sqrt{a}(4 - a) \]
\[\therefore 2\sqrt{a}(4 - a) - \sqrt{a} = 0 \]
\[\therefore \sqrt{a}(8 - 2a - 1) = 0 \]
\[\therefore \sqrt{a}(7 - 2a) = 0 \]
\[\therefore a = 0 \text{ or } \frac{7}{2}. \]

But \(a = 0\) is the endpoint of the function, so there is no normal here.

When \(a = \frac{7}{2}\), \[y - \sqrt{\frac{7}{2}} = -2\sqrt{\frac{7}{2}}(x - \frac{7}{2}) \]
\[\therefore \sqrt{2}y - \sqrt{7} = -2\sqrt{7}(x - \frac{7}{2}) \]
\[\therefore \sqrt{2}y + 2\sqrt{7}x = 7\sqrt{7} + \sqrt{7} \]
\[\therefore \sqrt{2}y + 2\sqrt{7}x = 8\sqrt{7} \]
\[\therefore y = -\sqrt{14}x + 4\sqrt{14} \]

with contact point \((\frac{7}{2}, \sqrt{\frac{7}{2}})\).

15 \(y = e^x \) so when \(x = a \), \(y = e^a \)
\[\therefore \text{the point of contact is } (a, e^a). \]

Now \(\frac{dy}{dx} = e^x \)
\[\therefore \text{at the point } (a, e^a), \frac{dy}{dx} = e^a \]
\[\therefore \text{the tangent has equation } \frac{y - e^a}{x - a} = e^a \]
\[\therefore y - e^a = e^a(x - a) \quad \text{... (1)} \]
Since the tangent passes through the origin, \((0, 0)\) must satisfy \((1)\)
\[\therefore 0 - e^a = e^a(0 - a) \]
\[\therefore -e^a = -ae^a \]
\[\therefore e^a(a - 1) = 0 \]
\[\therefore a = 1 \quad \text{(as } e^a > 0) \]
So the equation of the tangent is \(y - e = ex - e \) or \(y = ex \).

16 \(a \)

\[f(x) = \frac{8}{x^2} \]
\[f'(x) = -16x^{-3} = -\frac{16}{x^3} \]
\[f'(a) = -\frac{16}{a^3} \]
\[\therefore \text{the gradient of the tangent at } (a, \frac{8}{a^2}) \text{ is } -\frac{16}{a^3} \]
\[\therefore \text{the equation of the tangent is } \frac{y - \frac{8}{a^2}}{x - a} = -\frac{16}{a^3} \]
\[\therefore a^3y - 8a = -16x + 16a \]
\[\therefore 16x + a^3y = 24a \]

4 The tangent cuts the \(x\)-axis when \(y = 0 \)
\[\therefore 16x = 24a \]
\[\therefore x = \frac{3}{2}a \]
\[\therefore \text{A is } \left(\frac{3}{2}a, 0\right). \]

The tangent cuts the \(y\)-axis when \(x = 0 \)
\[\therefore a^3y = 24a \]
\[\therefore y = \frac{24}{a^3} \]
\[\therefore \text{B is } \left(0, \frac{24}{a^2}\right). \]

\[\text{Area of triangle OAB} \]
\[= \frac{1}{2} \times \left(\frac{3}{2}a\right) \times \left(\frac{24}{a^2}\right) \]
\[= \frac{18}{|a|} \text{ units}^2 \]
\[\text{As } a \to \infty, \frac{18}{a} \to 0 \]
\[\therefore \text{area } \to 0 \]
17 \[y = 3e^{-x} \text{ and } y = 2 + e^x \text{ meet when } 3e^{-x} = 2 + e^x \]
\[\therefore 3 = 2e^x + e^2x \quad \{ \times e^x \} \]
\[\therefore e^{2x} + 2e^x - 3 = 0 \]
\[\therefore (e^x + 3)(e^x - 1) = 0 \]
\[\therefore e^x = -3 \text{ or } 1 \]
\[\therefore e^x = 1 \text{ and so } x = 0 \quad \{ \text{as } e^x > 0 \} \]

Now when \(x = 0, \ y = 3e^0 = 3, \) so the graphs meet at \((0, 3)\).

For \(y = 2 + e^x, \ \frac{dy}{dx} = e^x, \)
so at the point \((0, 3), \ \frac{dy}{dx} = e^0 = 1 \)

\[\therefore \text{the gradient of the tangent at this point is } 1 \]

\[\therefore \text{the tangent has direction vector } \left\langle \frac{1}{1} \right\rangle \]

For \(y = 3e^{-x}, \ \frac{dy}{dx} = -3e^{-x}, \)
so at the point \((0, 3), \ \frac{dy}{dx} = -3 \)

\[\therefore \text{the gradient of the tangent at this point is } -3 \]

\[\therefore \text{the tangent has direction vector } \left\langle \frac{-3}{1} \right\rangle \]

If \(\theta \) is the acute angle between the tangents, then
\[\cos \theta = \frac{|1(1) + 1(-3)|}{\sqrt{1^2 + 1^2} \sqrt{1^2 + (-3)^2}} = \frac{|-2|}{2\sqrt{10}} = \frac{2}{\sqrt{20}} \]
\[\therefore \theta \approx 63.43^\circ \]

18 a \(y = ax^2, \ a > 0 \) touches \(y = \ln x \) when \(ax^2 = \ln x \)

If the curves touch when \(x = b \) then \(ab^2 = \ln b \) \(\ldots (1) \)

Now for \(y = ax^2, \ \frac{dy}{dx} = 2ax \) and for \(y = \ln x, \ \frac{dy}{dx} = \frac{1}{x} \)
\[\therefore \text{when } x = b, \ \frac{dy}{dx} = 2ab \]
\[\therefore \text{when } x = b, \ \frac{dy}{dx} = \frac{1}{b} \]

Since the curves touch each other, they share a common tangent. \(\therefore \frac{1}{b} = 2ab \) \(\ldots (2) \)

b Now \(ab^2 = \frac{1}{2} \) \(\{ \text{from (2)} \} \)

and \(ab^2 = \ln b \) \(\{ \text{from (1)} \} \)
\[\therefore \ln b = \frac{1}{2} \]
\[\therefore b = e^{\frac{1}{2}} = \sqrt{e} \]

When \(x = b = \sqrt{e}, \ y = \ln x = \ln e^{\frac{1}{2}} = \frac{1}{2} \)
\[\therefore \text{the point of contact is } \left(\sqrt{e}, \frac{1}{2} \right) \]

c \(a = \frac{1}{2b^2} \) \(\{ \text{from (2)} \} \)
\[\therefore a = \frac{1}{2(\sqrt{e})^2} = \frac{1}{2e} \]

d The tangent has gradient \(\frac{1}{b} = \frac{1}{\sqrt{e}} \) and passes through \(\left(\sqrt{e}, \frac{1}{2} \right) \)
\[\therefore \text{the tangent is } \frac{y - \frac{1}{2}}{x - \sqrt{e}} = \frac{1}{\sqrt{e}} \therefore y - \frac{1}{2} = \frac{1}{\sqrt{e}} \left(x - \sqrt{e} \right) \]
\[\therefore y - \frac{1}{2} = \frac{1}{\sqrt{e}} x - 1 \]
\[\therefore y = e^{-\frac{1}{2}} x - \frac{1}{2} \]

EXERCISE 16B

1 a

\[y \]

\[x \]

\[(3, -3) \]

\[x \geq 0 \quad \text{II never} \]

b

\[y \]

\[(-2, 2) \]

\[(3, -3) \]

\[x \]

\[x \leq 2 \quad \text{II } x \geq 2 \]

c

\[y \]

\[(2, 3) \]

\[x \]

\[x \leq 2 \quad \text{II } x \geq 2 \]
2. a. \(f(x) = x^2, \quad f'(x) = 2x \)

 Sign diagram of \(f'(x) \):

 Increasing when \(x \geq 0 \),
 Decreasing when \(x \leq 0 \)

 b. \(f(x) = -x^3, \quad f'(x) = -3x^2 \)

 Sign diagram of \(f'(x) \):

 Decreasing for all \(x \)

 c. \(f(x) = 2x^2 + 3x - 4, \quad f'(x) = 4x + 3 \)

 Sign diagram of \(f'(x) \):

 Increasing when \(x \geq -\frac{3}{4} \),
 Decreasing when \(x \leq -\frac{3}{4} \)

 d. \(f(x) = \sqrt{x} = x^{\frac{1}{2}} \),

 \(f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \)

 Sign diagram of \(f'(x) \):

 \(f(x) \) is only defined when \(x \geq 0 \)
 Increasing when \(x \geq 0 \), never decreasing

 e. \(f(x) = e^x \), \(f'(x) = e^x \)

 Sign diagram of \(f'(x) \):

 \(f(x) \) is increasing for all \(x \)

 f. \(f(x) = x^3 - 6x^2, \quad f'(x) = 3x^2 - 12x = 3x(x-4) \)

 Sign diagram of \(f'(x) \):

 Increasing when \(x \leq 0 \) or \(x \geq 4 \),
 Decreasing when \(0 \leq x \leq 4 \)

 g. \(f(x) = \ln x, \quad f'(x) = \frac{1}{x} \)

 Sign diagram of \(f'(x) \):

 \(f(x) \) is only defined when \(x > 0 \)
 Increasing when \(x > 0 \), never decreasing

 h. \(f(x) = -4x^3 + 15x^2 + 18x + 3 \)

 \(f'(x) = -12x^2 + 30x + 18 \)

 \(= -6(2x^2 - 5x - 3) \)

 \(= -6(2x+1)(x-3) \)

 Sign diagram of \(f'(x) \):

 Increasing when \(-\frac{1}{2} \leq x \leq 3 \),
 Decreasing when \(x \leq -\frac{1}{2} \) or \(x \geq 3 \)
\(f(x) = 3 + e^{-x} \), \(f'(x) = -e^{-x} \)

Sign diagram of \(f'(x) \):

\(f(x) \) is decreasing for all \(x \).

\(f(x) = 3x^4 - 16x^3 + 24x^2 - 2, \)

\(f'(x) = 12x^3 - 48x^2 + 48x = 12x(x^2 - 4x + 4) = 12x(x - 2)^2 \)

Sign diagram of \(f'(x) \):

increasing when \(x \geq 0 \),
decreasing when \(x \leq 0 \)

\(f(x) = x^3 - 6x^2 + 3x - 1, \)

\(f'(x) = 3x^2 - 12x + 3 = 3(x^2 - 4x + 1) \)

\(f'(x) = 0 \) when \(x = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3} \)

Sign diagram of \(f'(x) \):

increasing when \(x \leq 2 - \sqrt{3} \)
or \(x \geq 2 + \sqrt{3} \),
decreasing when \(2 - \sqrt{3} \leq x \leq 2 + \sqrt{3} \)

\(f(x) = \frac{4x}{x^2 + 1} \)
is a quotient with \(u = 4x \) and \(u = x^2 + 1 \)

\(u' = 4 \) and \(u' = 2x \)

\(f'(x) = \frac{4(x^3 + 1) - 4x \times 2x}{(x^2 + 1)^2} = \frac{4x^2 + 4 - 8x^2}{(x^2 + 1)^2} = \frac{4 - 4x^2}{(x^2 + 1)^2} = \frac{-4(x^2 - 1)}{(x^2 + 1)^2} = \frac{-4(x + 1)(x - 1)}{(x^2 + 1)^2} \)

Sign diagram of \(f'(x) \):

\(f(x) \) is increasing for \(-1 \leq x \leq 1\),
decreasing for \(x \leq -1 \) and \(x \geq 1 \)

\(f(x) = xe^x, \)

\(f'(x) = e^x + xe^x = e^x(1 + x) \)

Sign diagram of \(f'(x) \):

increasing when \(x \geq -1 \)
decreasing when \(x \leq -1 \)

\(f(x) = 2x^3 + 9x^2 + 6x - 7, \)

\(f'(x) = 6x^2 + 18x + 6 = 6(x^2 + 3x + 1) \)

\(f'(x) = 0 \) when \(x = \frac{-3 \pm \sqrt{9 - 4}}{2} = \frac{-3 \pm \sqrt{5}}{2} \)

Sign diagram of \(f'(x) \):

increasing for \(x \leq 2 \sqrt{5} \) or \(x \geq -3 + \sqrt{5} \),
decreasing for \(\frac{-3 - \sqrt{5}}{2} \leq x \leq \frac{-3 + \sqrt{5}}{2} \)

\(f(x) = x - 2\sqrt{x} = x - 2x^{\frac{1}{2}} \)

\(f'(x) = 1 - x^{-\frac{1}{2}} = 1 - \frac{1}{\sqrt{x}} = \frac{\sqrt{x} - 1}{\sqrt{x}} \)

Sign diagram of \(f'(x) \):

increasing when \(x \geq 1 \),
decreasing when \(0 \leq x \leq 1 \)

\(f(x) = \frac{4x}{(x - 1)^2} \)
is a quotient with \(u = 4x \) and \(u = (x - 1)^2 \)

\(u' = 4 \) and \(u' = 2(x - 1) \)

\(f'(x) = \frac{4(x - 1)^2 - 8x(x - 1)}{(x - 1)^4} = \frac{4(x - 1)[(x - 1) - 2x]}{(x - 1)^4} = \frac{4(-1 - x)}{(x - 1)^3} = \frac{-4(x - 1)}{(x - 1)^3} \)

Sign diagram of \(f'(x) \):

\(f(x) \) is increasing for \(-1 \leq x < 1 \),
decreasing for \(x \leq -1 \) and \(x > 1 \)
5 a \(f(x) = \frac{-x^2 + 4x - 7}{x - 1} \) is a quotient with \(u = -x^2 + 4x - 7 \) and \(v = x - 1 \)
\[\therefore \quad u' = -2x + 4 \quad \text{and} \quad v' = 1 \]
\[\therefore \quad f'(x) = \frac{(-2x + 4)(x - 1) - (-x^2 + 4x - 7)(1)}{(x - 1)^2} \]
\[= \frac{-2x^2 + 6x - 4 + x^2 - 4x + 7}{(x - 1)^2} \]
\[= \frac{-x^2 + 2x + 3}{(x - 1)^2} \]
\[= \frac{-(x^2 - 2x - 3)}{(x - 1)^2} \]
\[= \frac{-(x + 1)(x - 3)}{(x - 1)^2} \]

Sign diagram of \(f'(x) \):

\[\begin{array}{cccc}
& -1 & + & \frac{1}{3} & - \\
\hline
\frac{1}{3} & 1 & & & \frac{1}{3} \\
\frac{1}{3} & & & & -1 \\
\frac{1}{3} & & & & -1 \\
\frac{1}{3} & & & & -1 \\
\end{array} \]

b \(f(x) \) is increasing for \(-1 \leq x < 1\) and \(1 < x \leq 3\), and decreasing for \(x \leq -1\) and \(x \geq 3\).

6 a \(f(x) = \frac{x^3}{x^2 - 1} \) is a quotient with \(u = x^3 \) and \(v = x^2 - 1 \)
\[\therefore \quad u' = 3x^2 \quad \text{and} \quad v' = 2x \]
\[\therefore \quad f'(x) = \frac{3x^2(x^2 - 1) - x^3 \times 2x}{(x^2 - 1)^2} \]
\[= \frac{3x^4 - 3x^2 - 2x^4}{(x^2 - 1)^2} \]
\[= \frac{x^2(x^2 - 3)}{(x^2 - 1)^2} \]
\[= \frac{x^2(x + \sqrt{3})(x - \sqrt{3})}{(x^2 - 1)^2} \]

Sign diagram of \(f'(x) \):

\[\begin{array}{cccccc}
& + & - & \frac{1}{\sqrt{3}} & - & - \\
\hline
\frac{1}{\sqrt{3}} & -1 & & & 0 & 1 \\
\frac{1}{\sqrt{3}} & & & & 1 & \sqrt{3} \\
\frac{1}{\sqrt{3}} & & & & -1 & -1 \\
\frac{1}{\sqrt{3}} & & & & -1 & -1 \\
\end{array} \]

b \(f(x) = e^{-x^2} \)

Sign diagram of \(f'(x) \):

\[\begin{array}{cccc}
& + & - & 0 \\
\hline
0 & & & - \\
\end{array} \]

\[\therefore \quad f(x) \) is increasing for \(x \leq 0 \) and decreasing for \(x \geq 0 \).

\[f(x) = x^2 + \frac{4}{x - 1} = x^2 + 4(x - 1)^{-1} \]
\[\therefore \quad f'(x) = 2x - 4(x - 1)^{-2} \times 1 \]
\[= 2x - \frac{4}{(x - 1)^2} \]
\[= \frac{2x(x - 1)^2 - 4}{(x - 1)^2} \]
\[= \frac{2x(x^2 - 2x + 1) - 4}{(x - 1)^2} \]
\[= \frac{2x^3 - 4x^2 + 2x - 4}{(x - 1)^2} \]
\[= \frac{(x - 2)(2x^2 + 2)}{(x - 1)^2} \]

Sign diagram of \(f'(x) \):

\[\begin{array}{cccc}
& - & \frac{1}{1} & + \\
\hline
\frac{1}{2} & & & - \\
\end{array} \]

\[\therefore \quad f(x) \) is increasing for \(x \geq 2 \), and decreasing for \(x < 1 \) and \(1 < x \leq 2 \).
\[f(x) = \frac{e^{-x}}{x} \] is a quotient with \[u = e^{-x} \] and \[v = x \]

\[u' = -e^{-x} \quad \text{and} \quad v' = 1 \]

\[f'(x) = \frac{-e^{-x}x - e^{-x} \times 1}{x^2} = \frac{-e^{-x}(x + 1)}{x^2} \]

\[\therefore f'(x) \text{ is increasing for } x \leq -1, \text{ and decreasing for } -1 \leq x < 0 \quad \text{and} \quad x > 0. \]

EXERCISE 16C

1. a. A is a local maximum, B is a stationary inflection, C is a local minimum.

 b. \(f'(x) \) has sign diagram:

 ![Sign Diagram](image)

 c. \(f(x) \) is increasing for \(x \leq -2 \) and \(x \geq 3 \)

 d. \(f(x) \) has sign diagram:

 ![Sign Diagram](image)

2. a. \(f(x) = x^2 - 2 \therefore f'(x) = 2x \)

 ![Graph](image)

 b. \(f(x) = x^3 + 1 \therefore f'(x) = 3x^2 \)

 ![Graph](image)

 c. \(f(x) = x^3 - 3x + 2 \)

 \[f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x + 1)(x - 1) \]

 ![Graph](image)

 d. \(f(x) = x^4 - 2x^3 \)

 \[f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x + 1)(x - 1) \]

 ![Graph](image)
\[f(x) = x^3 - 6x^2 + 12x + 1 \]
\[f'(x) = 3x^2 - 12x + 12 \]
\[= 3(x^2 - 4x + 4) \]
\[= 3(x - 2)^2 \]

with sign diagram:

Now \(f(2) = 9 \), so there is a stationary inflection at \((2, 9)\).

\[f(x) = x - \sqrt{x} \]
\[f'(x) = 1 - \frac{1}{2}x^{-\frac{1}{2}} \]
\[= 1 - \frac{1}{2\sqrt{x}} \]

with sign diagram:

\(f(x) \) is defined for all \(x \geq 0 \)

Now \(f\left(\frac{1}{4}\right) = -\frac{1}{4} \), so there is a local minimum at \(\left(\frac{1}{4}, -\frac{1}{4}\right)\).

\[f(x) = 1 - x\sqrt{x} = 1 - x^{\frac{3}{2}} \]
\[f'(x) = -\frac{3}{2}x^{\frac{1}{2}} = -\frac{3\sqrt{x}}{2} \]

with sign diagram:

\(f(x) \) is only defined when \(x \geq 0 \)

Now \(f(0) = 1 \), so there is a local maximum at \((0, 1)\).

\[f(x) = \sqrt{x} + 2 \]
\[f'(x) = \frac{1}{2}x^{-\frac{1}{2}} \]
\[= \frac{1}{2\sqrt{x}} \neq 0 \]

with sign diagram:

\(f(x) \) is not stationary.

\[f(x) = x^4 - 6x^2 + 8x - 3 \]
\[f'(x) = 4x^3 - 12x + 8 \]
\[= 4(x^3 - 3x + 2) \]
\[= 4(x - 1)(x^2 + x - 2) \]
\[= 4(x - 1)(x + 2)(x - 1) \]

with sign diagram:

Now \(f(-2) = -27 \), \(f(1) = 0 \), so there is a local minimum at \((-2, -27)\), and a stationary inflection at \((1, 0)\).

\[f(x) = x^4 - 2x^2 - 8 \]
\[f'(x) = 4x^3 - 4x \]
\[= 4x(x^2 - 1) = 4x(x + 1)(x - 1) \]

with sign diagram:

Now \(f(-1) = -9 \), \(f(1) = 0 \), \(f(0) = -8 \), so there are local minima at \((-1, -9)\) and \((1, -9)\), and a local maximum at \((0, -8)\).
3 \[f(x) = ax^2 + bx + c, \quad a \neq 0 \]
\[\therefore f'(x) = 2ax + b \]

\(f(x) \) has a stationary point when \(f'(x) = 0 \)
\[\therefore x = -\frac{b}{2a} \]

There is a local maximum when \(a < 0 \) and there is a local minimum when \(a > 0 \)

4 \(a \)
\[y = xe^{-x} \]
\[\therefore \frac{dy}{dx} = 1e^{-x} - xe^{-x} \quad \{\text{product rule}\} \]
\[= e^{-x}(1 - x) \]
\[= \frac{1 - x}{e^x} \]

which has sign diagram:

When \(x = 1, \ y = 1e^{-1} = \frac{1}{e} \), so we have a local maximum at \((1, \frac{1}{e}) \).

\(b \)
\[y = xe^x \]
\[\therefore \frac{dy}{dx} = 2xe^x + xe^x \quad \{\text{product rule}\} \]
\[= xe^x(2 + x) \]

which has sign diagram:

When \(x = -2, \ y = 4e^{-2} \), and when \(x = 0, \ y = 0 \).

So, we have a local maximum at \((-2, \frac{4}{e^2}) \), and a local minimum at \((0, 0) \).

\(c \)
\[y = \frac{e^x}{x} \]
\[\therefore \frac{dy}{dx} = \frac{e^x x - e^x (1)}{x^2} \quad \{\text{quotient rule}\} \]
\[= \frac{e^x(x - 1)}{x^2} \]

which has sign diagram:

When \(x = 1, \ y = \frac{e^1}{1} = e \), so we have a local minimum at \((1, e) \).

\(d \)
\[y = e^{-x}(x + 2) \]
\[\therefore \frac{dy}{dx} = -e^{-x}(x + 2) + e^{-x} \quad \{\text{product rule}\} \]
\[= e^{-x}(-x - 2 + 1) \]
\[= e^{-x}(-x - 1) \]

which has sign diagram:

When \(x = -1, \ y = e(-1 + 2) = e \), so we have a local maximum at \((-1, e) \).

5 \[f(x) = 2x^2 + ax^2 - 24x + 1 \]
\[\therefore f'(x) = 6x^2 + 2ax - 24 \]

But \(f'(-4) = 0 \), so \(96 - 8a - 24 = 0 \)
\[\therefore 72 = 8a \]
\[\therefore a = 9 \]

6 \(a \)
\[f(x) = ax^3 + bx + b \]
\[\therefore f'(x) = 3ax^2 + a \]

But \(f'(-2) = 0 \)
\[\therefore 3(-2)^2 + a = 0 \]
\[\therefore 12 + a = 0 \]
\[\therefore a = -12 \]

Also, \(f(-2) = 3 \)
\[(-2)^3 - 12(-2) + b = 3 \]
\[-8 + 24 + b = 3 \]
\[\therefore b = -13 \]
Now \(f(x) = x^3 - 12x - 13 \)
\[f'(x) = 3x^2 - 12 \]
\[= 3(x^2 - 4) \]
\[= 3(x + 2)(x - 2) \] with sign diagram:

Now \(f(2) = -29 \), so there is a local minimum at \((2, -29)\) and a local maximum at \((-2, 3)\).

7 a \(f(x) \) is defined when \(\ln x \) is defined \(\therefore f(x) \) is defined for \(x > 0 \)

\(f'(x) = \ln x + \frac{x}{x} \) \{product rule\}
\[= \ln x + 1 \]
which is 0 when \(\ln x = -1 \)
\[\therefore x = e^{-1} \]

Sign diagram of \(f'(x) \) is:

So, there is a local minimum at \(\left(\frac{1}{e}, \frac{1}{e} \ln \frac{1}{e} \right) \)
\[\therefore \text{the global minimum value of } f(x) \text{ is } \frac{1}{e} \ln e^{-1} = -\frac{1}{e} \]

8 a If \(f(x) = \sin x \) then \(f'(x) = \cos x \)
Stationary points occur when \(f'(x) = 0 \),
which is when \(x = \frac{\pi}{2}, 2\frac{\pi}{2} \)
Sign diagram for \(f'(x) \) is:

There is a local maximum at \(\left(\frac{\pi}{2}, 1 \right) \)
and a local minimum at \(\left(2\frac{\pi}{2}, -1 \right) \).

\(\text{If } f(x) = \cos (2x) \text{ then } f'(x) = -2 \sin (2x) \)
\[\therefore f'(x) = 0 \text{ when } -2 \sin (2x) = 0 \]
\[\therefore \sin (2x) = 0 \]
\[\therefore 2x = k\pi \text{ for any integer } k \]
\[\therefore x = \frac{k\pi}{2} \]

On the domain \(0 \leq x \leq 2\pi \), \(f'(x) = 0 \)
when \(x = 0, \frac{\pi}{2}, \pi, 2\frac{\pi}{2}, \text{ and } 2\pi \).
Sign diagram for \(f'(x) \) is:

There are local maxima at \((0, 1), (\pi, 1), (2\pi, 1)\) and local minima at \(\left(\frac{\pi}{2}, -1 \right), \left(2\frac{\pi}{2}, -1 \right)\).

4 If \(f(x) = \sin^2 x \) then \(f'(x) = 2 \sin x \cos x = \sin (2x) \)
\[\therefore f'(x) = 0 \text{ when } \sin (2x) = 0 \]

Using 8, we know that on the domain \(0 \leq x \leq 2\pi \)
\[f'(x) = 0 \text{ when } x = 0, \frac{\pi}{2}, \pi, 2\frac{\pi}{2}, \text{ and } 2\pi \).
Sign diagram for \(f'(x) \) is:

There are local minima at \((0, 0), (\pi, 0), (2\pi, 0)\) and local maxima at \(\left(\frac{\pi}{2}, 1 \right), \left(2\frac{\pi}{2}, 1 \right)\).
If \(f(x) = e^{\sin x} \) then \(f'(x) = e^{\sin x} \times \cos x \)

\[
\therefore f'(x) = 0 \text{ when } \cos x e^{\sin x} = 0
\]

\[
\therefore \cos x = 0 \quad \{e^{\sin x} > 0 \text{ for all } x\}
\]

\[
\therefore x = \frac{\pi}{2} + k\pi, \quad k \text{ an integer}
\]

On the domain \(0 \leq x \leq 2\pi \), \(f'(x) = 0 \)

when \(x = \frac{\pi}{2}, \frac{3\pi}{2} \).

Sign diagram for \(f'(x) \):

There is a local maximum at \((\frac{\pi}{2}, e) \)

and a local minimum at \((\frac{3\pi}{2}, \frac{1}{e}) \).

If \(f(x) = \sin(2x) + 2 \cos x \) then \(f'(x) = 2 \cos(2x) - 2 \sin x \)

\[
\therefore f'(x) = 0 \text{ when } 2 \cos(2x) - 2 \sin x = 0
\]

\[
\therefore 2(1 - 2 \sin^2 x) - 2 \sin x = 0
\]

\[
\therefore -2(2 \sin^2 x + \sin x - 1) = 0
\]

\[
\therefore -2(2 \sin x - 1)(\sin x + 1) = 0
\]

\[
\therefore \text{when } \sin x = \frac{1}{2} \text{ or } \sin x = -1
\]

On the domain \(0 \leq x \leq 2\pi \), when \(x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2} \).

Sign diagram of \(f'(x) \):

\[
f\left(\frac{\pi}{6}\right) = \sin\left(\frac{2\pi}{6}\right) + 2 \cos\left(\frac{\pi}{6}\right)
\]

\[
= \frac{\sqrt{3}}{2} + 2 \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}
\]

\[
f\left(\frac{5\pi}{6}\right) = \sin\left(\frac{10\pi}{6}\right) + 2 \cos\left(\frac{5\pi}{6}\right)
\]

\[
= -\frac{\sqrt{3}}{2} + 2(-\frac{\sqrt{3}}{2}) = -\frac{3\sqrt{3}}{2}
\]

\[
f\left(\frac{3\pi}{2}\right) = \sin(3\pi) + 2 \cos\left(\frac{3\pi}{2}\right)
\]

\[
= 0 + 2 \times 0 = 0
\]

\[
\therefore \text{there is a local maximum at } \left(\frac{\pi}{6}, \frac{3\sqrt{3}}{2}\right),
\]

a local minimum at \(\left(\frac{5\pi}{6}, -\frac{3\sqrt{3}}{2}\right) \)

and a stationary point of inflection at \(\left(\frac{3\pi}{2}, 0\right) \).

Let the cubic polynomial be

\[
P(x) = ax^3 + bx^2 + cx + d
\]

\[
\therefore P'(x) = 3ax^2 + 2bx + c \quad \ldots (1)
\]

Now \((0, 2) \) lies on \(P(x) \), so \(P(0) = 2 \)

\[
\therefore a(0) + b(0) + c(0) + d = 2
\]

\[
\therefore d = 2
\]

The tangent at \((0, 2) \) is \(y = 9x + 2 \), so

\[
P'(0) = 9
\]

\[
\therefore 3a(0) + 2b(0) + c = 9
\]

\[
\therefore c = 9 \quad \ldots (2)
\]

There is a stationary point at \((-1, -7) \), so

\[
P'(-1) = 0
\]

\[
\therefore 3a(-1)^2 + 2b(-1) + c = 0 \quad \{\text{using (1)}\}
\]

\[
\therefore 3a - 2b + c = 0
\]

So, using (2), \(3a - 2b = -9 \quad \ldots (3) \)

Finally, \((-1, -7) \) lies on \(P(x) \)

\[
\therefore a(-1)^3 + b(-1)^2 + c(-1) + d = -7
\]

\[
\therefore -a + b - 9 + 2 = -7
\]

\[
\therefore b - a = 0
\]

\[
\therefore a = b
\]

So, using (3), \(3a - 2a = -9 \)

\[
\therefore a = -9
\]

\[
\therefore a = b = -9
\]

\[
\therefore P(x) = -9x^3 - 9x^2 + 9x + 2
\]
10 \[f(x) = x^3 - 12x - 2, \] for \(-3 \leq x \leq 5\)

\[
f'(x) = 3x^2 - 12 = 3(x + 2)(x - 2)
\]

which is 0 when \(x = -2\) or 2

\[
\therefore \text{the greatest value is 63 when } x = 5, \text{ and the least value is -18 when } x = 2.
\]

\[f(x) = 4 - 3x^2 + x^3, \] for \(-2 \leq x \leq 3\)

\[
f'(x) = -6x + 3x^2 = 3x(x - 2)
\]

which is 0 when \(x = 0\) or 2

\[
\therefore \text{greatest value is 4 when } x = 0 \text{ or } x = 3, \text{ least value is -16 when } x = -2.
\]

11 \[y = 4e^{-x} \sin x \]

\[\frac{dy}{dx} = -4e^{-x} \sin x + 4e^{-x} \cos x \]

\[\therefore \text{stationary points occur when } -4e^{-x} \sin x + 4e^{-x} \cos x = 0 \]

\[4e^{-x}(\cos x - \sin x) = 0 \]

\[\therefore \cos x - \sin x = 0 \quad \{e^{-x} > 0 \text{ for all } x\} \]

\[\therefore \sin x = \cos x \]

\[\therefore \tan x = 1 \]

\[\therefore x = \frac{\pi}{4} + k\pi, \quad k \text{ an integer} \]

Sign diagram of \(\frac{dy}{dx}\) is:

\[\cdots \quad - \quad \frac{\pi}{2} \quad \frac{\pi}{4} \quad \frac{3\pi}{4} \quad + \quad \cdots \quad x \]

\[\therefore y = 4e^{-x} \sin x \] has a local maximum when \(x = \frac{\pi}{4} \).

12 Consider \[f(x) = \frac{\ln x}{x} \]

\[f'(x) = \frac{\left(\frac{1}{x}\right)x - \ln x(1)}{x^2} = \frac{1 - \ln x}{x^2} \]

\[f'(x) = 0 \quad \text{when} \quad 1 - \ln x = 0 \]

\[\therefore \ln x = 1 \]

\[\therefore x = e \]

Sign diagram of \(f'(x)\) is:

\[0 \quad + \quad \frac{1}{e} \quad - \quad x \]

Now \(f(e) = \frac{\ln e}{e} = \frac{1}{e}\)

\[\therefore \text{there is a local maximum at } (e, \frac{1}{e}) \]

\[f(x) \leq \frac{1}{e} \text{ for all } x, \text{ and so } \frac{\ln x}{x} \leq \frac{1}{e} \text{ for all } x > 0 \]

13 \[f(x) = x - \ln x \]

\[f'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x} \]

and the sign diagram of \(f'(x)\) is:

\[0 \quad - \quad 1 \quad + \quad x \]

\[\therefore f(x) \] has a local minimum at \((1, 1 - \ln 1)\) or \((1, 1)\). This is the only turning point.

\[f(x) \geq 1 \text{ for all } x > 0 \]

\[\therefore x - \ln x \geq 1 \]

\[\therefore \ln x \leq x - 1 \text{ for all } x > 0 \]
EXERCISE 16D.1

1. a) The turning points of \(y = f(x) \) are point B, a local minimum, and point D, a local maximum.

b) The inflection point of \(y = f(x) \) is point C, a non-stationary point of inflection.

2. a) \(f(x) = x^3 + 3 \)
 \[f'(x) = 2x \]
 \[f''(x) = 2 \]
 Since \(f''(x) \neq 0 \), no points of inflection exist.

b) \(f(x) = 2 - x^3 \)
 \[f'(x) = -3x^2 \]
 \[f''(x) = -6x \]
 Now \(f''(x) = 0 \) when \(x = 0 \), and \(f'(0) = 0 \).
 \[\therefore \text{there is a stationary inflection at (0, 2).} \]

c) \(f(x) = x^3 - 6x^2 + 9x + 1 \)
 \[f'(x) = 3x^2 - 12x + 9 \]
 \[= 3(x^2 - 4x + 3) \]
 \[= 3(x - 3)(x - 1) \]
 and \(f''(x) = 6x - 12 = 6(x - 2) \)
 Now \(f''(x) = 0 \) when \(x = 2 \) and \(f'(2) \neq 0 \).
 \[\therefore \text{there is a non-stationary inflection at (2, f(2)) which is (2, 3).} \]

d) \(f(x) = x^3 + 6x^2 + 12x + 5 \)
 \[f'(x) = 3x^2 + 12x + 12 \]
 \[= 3(x^2 + 4x + 4) \]
 \[= 3(x + 2)^2 \]
 and \(f''(x) = 6x + 12 = 6(x + 2) \)
 Now \(f''(x) = 0 \) when \(x = -2 \) and \(f'(-2) = 0 \).
 \[\therefore \text{there is a stationary inflection at } (-2, f(-2)) \text{ which is } (-2, -3). \]

e) \(f(x) = -3x^4 - 8x^3 + 2 \)
 \[f'(x) = -12x^3 - 24x^2 \]
 \[= -12x^2(x + 2) \]
 and \(f''(x) = -36x^2 - 48x \)
 \[= -12x(3x + 4) \]
 \[\therefore \text{there is a stationary inflection at (0, 2), and a non-stationary inflection at } \]
 \[(-\frac{2}{3}, f(-\frac{2}{3})), \text{ which is } (-\frac{2}{3}, \frac{310}{27}). \]

f) \(f(x) = 3 - \frac{1}{\sqrt{x}} = 3 - x^{-\frac{1}{2}} \)
 \[f'(x) = \frac{1}{2}x^{-\frac{3}{2}} \]
 and \(f''(x) = -\frac{3}{4}x^{-\frac{5}{2}} = \frac{-3}{4x^2\sqrt{x}} \)
 Now \(f''(x) \neq 0 \) for all \(x \).
 \[\therefore \text{there are no points of inflection.} \]
3. \(f(x) = x^2 \)
 \[f'(x) = 2x \text{ which has sign diagram:} \]
 \[f''(x) = 2 \]
 I. There is a local minimum at (0, 0).
 II. There are no points of inflection as \(f''(x) \neq 0 \).
 III. \(f(x) \) is increasing when \(x \geq 0 \), and decreasing when \(x \leq 0 \).
 IV. \(f(x) \) is concave up for all \(x \) as \(f''(x) > 0 \) for all \(x \).

b. \(f(x) = x^3 \)
 \[f'(x) = 3x^2 \text{ which has sign diagram:} \]
 and \(f''(x) = 6x \text{ which has sign diagram:} \]
 I. A stationary inflection at (0, 0).
 II. A stationary inflection at (0, 0).
 III. \(f(x) \) is increasing for all real \(x \).
 IV. \(f(x) \) is concave up when \(x \geq 0 \), and concave down when \(x \leq 0 \).

c. \(f(x) = \sqrt{x} \)
 \[f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \text{ which has sign diagram:} \]
 and \(f''(x) = -\frac{1}{4}x^{-\frac{3}{2}} = -\frac{1}{4x\sqrt{x}} \text{ which has sign diagram:} \]
 I. There are no stationary points as \(f'(x) \neq 0 \).
 II. There are no points of inflection as \(f''(x) \neq 0 \).
 III. \(f(x) \) is increasing for all \(x \geq 0 \), never decreasing.
 IV. \(f(x) \) is concave down for all \(x \geq 0 \) as \(f''(x) < 0 \)
 for all \(x > 0 \), never concave up.

d. \(f(x) = x^3 - 3x^2 - 24x + 1 \)
 \[f'(x) = 3x^2 - 6x - 24 \]
 \[= 3(x^2 - 2x - 8) \]
 \[= 3(x - 4)(x + 2) \text{ which has sign diagram:} \]
 and \(f''(x) = 6x - 6 \text{ which has sign diagram:} \]
 I. \(f(-2) = 29 \), \(f(4) = -79 \), so there is a local maximum
 at \((-2, 29)\), and a local minimum at \((4, -79)\).
 II. \(f(1) = -25 \), so there is a non-stationary inflection
 at \((1, -25)\).
 III. \(f(x) \) is increasing for \(x \leq -2 \) and \(x \geq 4 \),
 and decreasing for \(-2 \leq x \leq 4 \).
 IV. \(f(x) \) is concave down for \(x \leq 1 \), and
 concave up for \(x \geq 1 \).
\(f(x) = 3x^4 + 4x^3 - 2 \)
\[f'(x) = 12x^3 + 12x^2 \]
\[= 12x^2(x + 1) \quad \text{which has sign diagram:} \]
and
\[f''(x) = 36x^2 + 24x \]
\[= 12x(3x + 2) \quad \text{which has sign diagram:} \]

I. There is a local minimum at \((-1, f(-1))\) which is \((-1, -3)\), and a stationary inflection at \((0, -2)\).

II. There is a non-stationary inflection at \((-\frac{2}{3}, f(-\frac{2}{3}))\)
which is \((-\frac{2}{3}, -\frac{20}{9})\), and a stationary inflection at \((0, -2)\).

III. \(f(x) \) is increasing for \(x \geq -1 \), and decreasing for \(x \leq -1 \).

IV. \(f(x) \) is concave down for \(-\frac{2}{3} \leq x \leq 0\), and concave up for \(x \leq -\frac{2}{3} \) and \(x \geq 0 \).

\[f(x) = (x - 1)^4 \]
\[f'(x) = 4(x - 1)^3 \quad \text{which has sign diagram:} \]
and
\[f''(x) = 12(x - 1)^2 \quad \text{which has sign diagram:} \]

I. There is a local minimum at \((1, 0)\).

II. Since there is no sign change in \(f''(x) \) at \(x = 1 \),
there are no points of inflection.

III. \(f(x) \) is increasing for \(x \geq 1 \), and decreasing for \(x \leq 1 \).

IV. \(f(x) \) is concave up for all \(x \).

\[f(x) = x^4 - 4x^3 + 3 \]
\[f'(x) = 4x^3 - 8x = 4x(x^2 - 2) \]
\[= 4x(x + \sqrt{2})(x - \sqrt{2}) \quad \text{which has sign diagram:} \]
\[f''(x) = 12x^2 - 8 = 4(3x^2 - 2) \]
\[= 4(\sqrt{3}x + \sqrt{2})(\sqrt{3}x - \sqrt{2}) \quad \text{which has sign diagram:} \]

I. There is a local maximum at \((0, 3)\), and
\(f(-\sqrt{2}) = f(\sqrt{2}) = -1 \), so there are
local minima at \((\sqrt{2}, -1)\) and \((-\sqrt{2}, -1)\).

II. \(f\left(\frac{\sqrt{2}}{3}\right) = f\left(-\frac{\sqrt{2}}{3}\right) = \frac{7}{9} \), so there are
non-stationary inflections at
\(\left(\frac{\sqrt{2}}{3}, \frac{7}{9}\right)\) and \((-\frac{\sqrt{2}}{3}, \frac{7}{9})\).

III. \(f(x) \) is increasing for \(-\sqrt{2} \leq x \leq 0\) and
\(x \geq \sqrt{2} \), and decreasing for \(x \leq -\sqrt{2} \)
and \(0 \leq x \leq \sqrt{2} \).

IV. \(f(x) \) is concave down for \(-\sqrt{\frac{2}{3}} \leq x \leq \sqrt{\frac{2}{3}} \),
and concave up for \(x \leq -\sqrt{\frac{2}{3}} \) and \(x \geq \sqrt{\frac{2}{3}} \).
\[f(x) = 3 - \frac{4}{\sqrt{x}} = 3 - 4x^{-\frac{1}{2}}, \quad x > 0 \]

\[f'(x) = 2x^{-\frac{3}{2}} = \frac{2}{x^{\frac{3}{2}}} \quad \text{with sign diagram:} \quad + \quad \text{at} \quad 0 \quad \rightarrow \quad x \]

and \[f''(x) = -3x^{-\frac{5}{2}} = -\frac{3}{x^{\frac{5}{2}}} \quad \text{with sign diagram:} \quad - \quad \text{at} \quad 0 \quad \rightarrow \quad x \]

\[\text{I} \quad \text{There are no stationary points as } f'(x) \neq 0. \\
\text{II} \quad \text{There are no points of inflection as } f''(x) \neq 0. \\
\text{III} \quad f(x) \text{ is increasing for all } x > 0 \text{ and never decreasing.} \\
\text{IV} \quad f(x) \text{ is concave down for all } x > 0 \text{ and never concave up.} \]

4. a. Consider \[f(x) = e^{2x} - 3 \]

\[f(x) \text{ cuts the } x\text{-axis at } A \text{ when } f(x) = 0 \]
\[e^{2x} - 3 = 0 \]
\[e^{2x} = 3 \]
\[2x = \ln 3 \]
\[x = \frac{\ln 3}{2} \]
\[\therefore \text{ A is } \left(\frac{\ln 3}{2}, 0 \right) \]

b. \[f(x) = e^{2x} - 3 \]
\[f'(x) = 2e^{2x} \]

Since \[e^{2x} > 0 \text{ for all } x, \quad f'(x) > 0 \text{ for all } x, \text{ and hence } f(x) \text{ is increasing for all } x. \]

c. \[f''(x) = 4e^{2x}, \text{ which is always } > 0. \]
\[\therefore \quad f(x) \text{ is concave up for all } x. \]

d. \[y = e^{2x} - 3 \]

\[x = -\infty, \quad e^{2x} \to 0, \quad \text{so } \quad e^{2x} - 3 \to -3^+ \]
\[\therefore \quad y = -3 \quad \text{is a horizontal asymptote.} \]

5. a. The \(x \)-intercepts occur when \(y = 0 \)

For \(f(x) = e^x - 3, \quad e^x - 3 = 0 \) and for \(g(x) = 3 - \frac{5}{e^x}, \quad 3 - \frac{5}{e^x} = 0 \)
\[e^x = 3 \]
\[x = \ln 3 \]
\[\therefore \quad 3e^x - 5 = 0 \]
\[\therefore \quad e^x = \frac{5}{3} \]
\[x = \ln \left(\frac{5}{3} \right) \]

\[\therefore \quad f(x) \text{ has } x\text{-intercept } \ln 3 \]

and \[g(x) \text{ has } x\text{-intercept } \ln \left(\frac{5}{3} \right) \]

The \(y \)-intercepts occur when \(x = 0 \)

Now \(f(0) = e^0 - 3 = -2 \) and \(g(0) = 3 - \frac{5}{e^0} = 3 - 5 = -2 \)
\[\therefore \quad \text{both } f(x) \text{ and } g(x) \text{ have } y\text{-intercept } -2. \]
\(f(x) \) and \(g(x) \) meet when
\[
\begin{align*}
e^x - 3 &= 3 - 5e^{-x} \\
e^{2x} - 3e^x &= 3e^x - 5 \quad \{ \times e^x \} \\
e^{2x} - 6e^x + 5 &= 0 \\
(e^x - 5)(e^x - 1) &= 0 \\
e^x &= 5 \text{ or } 1 \\
x &= \ln 5 \text{ or } 0
\end{align*}
\]
Now \(f(\ln 5) = e^{\ln 5} - 3 = 5 - 3 = 2 \)
and \(f(0) = -2 \)
\(\therefore f(x) \) and \(g(x) \) meet at \((\ln 5, 2)\) and \((0, -2)\).

\(\frac{dy}{dx} = e^x + 3e^{-x} = e^x + \frac{3}{e^x} \)
Since \(e^x > 0 \) for all \(x \),
\(\frac{dy}{dx} > 0 \) for all \(x \)
\(\therefore \) the function is increasing for all \(x \)

\(f(x) = \ln(2x - 1) - 3 \)
\(\begin{align*}
f(x) &= 0 \quad \text{when} \quad \ln(2x - 1) = 3 \\
\therefore 2x - 1 &= e^3 \\
\therefore 2x &= e^3 + 1 \\
\therefore x &= \frac{e^3 + 1}{2} \approx 10.5 \\
\therefore \text{the x-intercept is} \quad \frac{e^3 + 1}{2}
\end{align*} \)
\(f(0) \) cannot be found as \(\ln(-1) \) is not defined. \(\therefore \) there is no \(y \)-intercept.

\(f'(x) = \frac{2}{2x - 1} \quad \therefore f'(1) = \frac{2}{2 - 1} = 2 \quad \therefore \text{gradient of tangent} = 2 \)
\(\ln(2x - 1) \) has meaning provided \(2x - 1 > 0 \)
\(\therefore 2x > 1 \) and so \(x > \frac{1}{2} \)
\(\therefore \text{the domain of} \ f \ \text{is} \ \{ x \mid x > \frac{1}{2} \} \)
\[f'(x) = 2(2x - 1)^{-1} \]
\[f''(x) = -2(2x - 1)^{-2}(2) \]
\[f'(x) = \frac{-4}{(2x - 1)^2}, \quad x > \frac{1}{2} \]

\[\therefore \text{ provided } x > \frac{1}{2}, \quad f''(x) < 0 \]
\[\therefore f(x) \text{ is concave down for all } x \text{ in the domain of } f. \]

\[f(x) = \ln x \text{ is defined for all } x > 0. \]

\[f'(x) = \frac{1}{x} \text{ which is } > 0 \text{ for all } x > 0 \]
\[\therefore f(x) \text{ is increasing on } x > 0; \quad \text{its gradient is always positive.} \]
\[f''(x) = -x^{-2} = \frac{-1}{x^2} \text{ which is } < 0 \text{ for all } x > 0 \]
\[\therefore f(x) \text{ is concave down on } x > 0. \]

\[f(x) = \ln x \]
\[y = 1, \quad 1 = \ln x \]
\[\therefore x = e^1 = e \]
\[\therefore \text{ the point of contact is } (e, 1) \]

\[\text{Now } \frac{dy}{dx} = \frac{1}{x} \]
\[\therefore \text{ at } (e, 1), \quad \frac{dy}{dx} = \frac{1}{e} \]

\[\therefore \text{ the gradient of the tangent is } \frac{1}{e}, \text{ and the gradient of the normal is } -e \]

\[\therefore \text{ the equation of the normal is } \frac{y - 1}{x - e} = -e \]
\[\therefore y - 1 = -e(x - e) \]
\[\therefore y = -ex + e^2 \]
\[\therefore y = -ex + 1 + e^2 \]

Consider \[f(x) = \frac{e^x}{x} \]

\[e^x \neq 0 \text{ for all } x, \text{ so } f(x) \neq 0 \text{ and there is no } x\text{-intercept.} \]

\[f(0) = \frac{e^0}{0} \text{ is undefined, so there is also no } y\text{-intercept.} \]

\[\text{As } x \to +\infty \quad f(x) \to \infty, \quad \text{and as } x \to -\infty, \quad f(x) \to 0^- \]
\[\text{(As } x \to 0^+, \quad y \to +\infty, \quad \text{and as } x \to 0^-, \quad y \to -\infty \text{)} \]
\[\therefore x = 0 \text{ is a vertical asymptote.} \]

\[\text{Using the quotient rule, } \quad f'(x) = \frac{e^x(x - 1) - e^x x}{x^2} \]
\[\quad = \frac{e^x(x^2 - 2x + 2)}{x^3} \]

\[f(1) = \frac{e^1}{1} = e, \quad \text{so there is a local minimum at } (1, e). \]

\[\text{Using the product and quotient rules,} \]
\[f''(x) = \frac{[e^x(x - 1) + e^x]x^2 - e^x(x - 1)2x}{x^4} \]
\[= \frac{e^x(x^2 - 2x + 2)}{x^3} \]

\[\text{with sign diagram:} \]

\[f(x) \text{ is concave up for } x > 0. \]
\[f(x) \text{ is concave down for } x < 0. \]
Now \(f'(x) = \frac{e^x(x-1)}{x^2} \)

\[f'(-1) = \frac{e^{-1}(-1-1)}{(-1)^2} = -2 \frac{2}{e} \]

\[\therefore \text{the gradient of the tangent is } -\frac{2}{e} \]

When \(x = -1, y = \frac{e^{-1}}{-1} = -\frac{1}{e} \)

\[\therefore \text{the equation of tangent is } \frac{y - \frac{1}{e}}{x - (-1)} = -\frac{2}{e} \]

\[\therefore \frac{y + \frac{1}{e}}{x + 1} = -\frac{2}{e} \]

\[\therefore e(y + \frac{1}{e}) = -2(x + 1) \]

\[\therefore ey + 1 = -2x - 2 \]

\[\therefore ey = -2x - 3 \]

\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \]

\[f'(x) = \frac{-x}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \]

\[\therefore f'(x) = \frac{-x}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-x) \]

\[\therefore f''(x) = \frac{1}{\sqrt{2\pi}} \left((-1) e^{-\frac{1}{2}x^2} + (-x) e^{-\frac{1}{2}x^2} (-x) \right) \]

\[= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (x^2 - 1) \]

\[= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (x + 1)(x - 1) \]

\[\therefore \text{which has sign diagram: } \begin{array}{ccc} + & - & - \\ -1 & & 1 \\ & + & + \end{array} \]

\[\text{Now } f(1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}} = \frac{1}{\sqrt{2e\pi}} \text{ and } f(-1) = \frac{-1}{\sqrt{2e\pi}} \]

\[\therefore \text{there are non-stationary points of inflection at } \left(1, \frac{1}{\sqrt{2e\pi}} \right) \text{ and } \left(-1, \frac{1}{\sqrt{2e\pi}} \right) . \]

As \(x \to \infty, e^{-\frac{1}{2}x^2} \to 0^+ \)

\[\therefore f(x) \to 0^+ \]

As \(x \to -\infty, e^{-\frac{1}{2}x^2} \to 0^+ \)

\[\therefore f(x) \to 0^+ \]

EXERCISE 16D.2

1. \(f(x) \) is quadratic, so \(f'(x) \) will be linear and \(f''(x) \) will be constant.

\(f(x) \) is decreasing for \(x < 1 \) and increasing for \(x > 1 \)

\[\therefore f'(x) \leq 0 \text{ for } x < 1 \text{ and } f'(x) \geq 0 \text{ for } x > 1 \]

\[\therefore f'(x) \text{ is an increasing linear function which cuts the } x\text{-axis at } 1. \]

As \(f'(x) \) is increasing, \(f''(x) > 0. \)
\(f(x) \) is cubic, so \(f'(x) \) will be quadratic and \(f''(x) \) will be linear.

- \(f(x) \) has turning points at \(x \approx \pm 1 \)
 \[f' \] cuts the \(x \)-axis at these points.
- \(f(x) \) has a non-stationary inflection point at \(x = 0 \)
 \[f' \] has a turning point at \(x = 0 \), and \(f''(0) = 0 \).
- \(f(x) \) is concave down for \(x \leq 0 \) and concave up for \(x \geq 0 \)
 \[f' \] is decreasing for \(x \leq 0 \) and increasing for \(x \geq 0 \)
 and \(f''(x) \leq 0 \) for \(x \leq 0 \) and \(\geq 0 \) for \(x \geq 0 \).

\(f(x) \) is cubic, so \(f'(x) \) will be quadratic and \(f''(x) \) will be linear.

- \(f(x) \) has turning points at \(x \approx 1 \) and \(x = 3 \)
 \[f' \] cuts the \(x \)-axis at these points.
- \(f(x) \) has a non-stationary inflection point at \(x = 2 \)
 \[f' \] has a turning point at \(x \approx 2 \), and \(f''(2) = 0 \)
- \(f(x) \) is concave down for \(x \leq 2 \) and concave up for \(x \geq 2 \)
 \[f' \] is decreasing for \(x \leq 2 \) and increasing for \(x \geq 2 \)
 and \(f''(x) \leq 0 \) for \(x \leq 2 \) and \(\geq 0 \) for \(x \geq 2 \).

2 a \(f'(x) \) has sign diagram:

- \(f(x) \) is increasing for \(x \leq -3 \), and decreasing for \(x \geq -3 \)
- \(f(x) \) has a local maximum at \(x = -3 \)
- \(f'(x) \) has a turning point at \(x \approx -1.7 \).
 At this point, \(f''(x) = 0 \), but \(f'(x) \neq 0 \)
- \(f(x) \) has a non-stationary inflection point here.
 \(f'(x) \) has another turning point at \(x = 1 \).
 At this point, \(f''(x) = 0 \) and \(f'(x) = 0 \)
- \(f(x) \) has a stationary inflection point at \(x = 1 \).
 A possible graph of \(f(x) \) is shown alongside:

\(f'(x) \) has sign diagram:

- \(f(x) \) has a local minimum at \(x = -2 \) and a local maximum at \(x = 4 \)
- \(f'(x) \) has a turning point at \(x \approx 1 \).
 At this point, \(f''(x) = 0 \), but \(f'(x) \neq 0 \)
- \(f(x) \) has a non-stationary inflection point at \(x \approx 1 \).
 A possible graph of \(f(x) \) is shown alongside:
REVIEW SET 16A

1. Consider \(y = -2x^2 \). When \(x = -1 \), \(y = -2(-1)^2 = -2 \), so the point of contact is \((-1, -2)\).

 Now \(\frac{dy}{dx} = -4x \)

 \(\therefore \) the tangent has equation \(\frac{y - (-2)}{x - (-1)} = 4 \)

 \(\therefore \) at \(x = -1 \), \(\frac{dy}{dx} = -4(-1) = 4 \)

 or \(y = 4x + 2 \)

2. Consider \(y = \frac{1 - 2x}{x^2} \). When \(x = 1 \), \(y = \frac{1 - 2(1)}{1^2} = -1 \), so the point of contact is \((1, -1)\).

 Since \(\frac{1}{x^2} - \frac{2}{x} \cdot \frac{dy}{dx} = -2x^{-3} + 2x^{-2} = -\frac{2}{x^3} + \frac{2}{x^2} \)

 \(\therefore \) at \(x = 1 \), \(\frac{dy}{dx} = -2 + 2 = 0 \)

 So, the tangent is a horizontal line, and the normal must be a vertical line of the form \(x = k \).

 As the normal passes through \((1, -1)\), its equation must be \(x = 1 \).

3. (a) The vertical asymptote is \(x + 3 = 0 \) or \(x = -3 \).

 (b) When \(y = 0 \), \(\frac{3x - 2}{x + 3} = 0 \)

 \(\therefore 3x - 2 = 0 \)

 \(\therefore x = \frac{2}{3} \)

 \(\therefore \) the \(x \)-intercept is \(\frac{2}{3} \).

 When \(x = 0 \), \(f(0) = -\frac{3}{2} \)

 \(\therefore \) the \(y \)-intercept is \(-\frac{3}{2} \).

4. \(y = e^{-x^2} \) so when \(x = 1 \), \(y = e^{-1} = \frac{1}{e} \)

 \(\therefore \) the point of contact is \((1, \frac{1}{e})\)

 Now \(\frac{dy}{dx} = -2xe^{-x^2} \)

 \(\therefore \) when \(x = 1 \), \(\frac{dy}{dx} = -2e^{-1} \)

 \(\therefore \) the gradient of the tangent is \(-\frac{2}{e} \)

 and the gradient of the normal is \(\frac{e}{2} \)

 \(\therefore \) the equation of the normal is \(\frac{y - \frac{1}{e}}{x - 1} = \frac{e}{2} \)

 \(\therefore \) \(2 \left(y - \frac{1}{e} \right) = e(x - 1) \)

 \(\therefore \) \(2y - \frac{2}{e} = ex - e \)

 \(\therefore \) \(2y = ex + \frac{2}{e} - e \)

 \(\therefore \) \(y = \frac{e}{2}x + \frac{1}{e} - \frac{e}{2} \)

5. \(y = x \tan x \)

 \(\therefore \) \(\frac{dy}{dx} = 1 \times \tan x + x \times \left(\frac{1}{\cos^2 x} \right) \)

 \(= \tan x + \frac{x}{\cos^2 x} \)

 Now \(\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) and \(\tan \frac{\pi}{4} = 1 \)

 \(\therefore \) at \(x = \frac{\pi}{4} \), \(y = \frac{\pi}{4} \),

 and \(\frac{dy}{dx} = 1 + \frac{\frac{\pi}{4}}{(1/\sqrt{2})^2} = 1 + \frac{\pi}{2} \)

 \(\therefore \) the equation of the tangent is \(\frac{y - \frac{\pi}{4}}{x - \frac{\pi}{4}} = 1 + \frac{\pi}{2} \)

 \(\therefore \) \(y - \frac{\pi}{4} = (1 + \frac{\pi}{2})(x - \frac{\pi}{4}) \)

 \(= x - \frac{\pi}{4} + \frac{\pi}{2}x - \frac{\pi^2}{8} \)

 \(\therefore \) \(y = (1 + \frac{\pi}{2})x - \frac{\pi^2}{8} \)

 \(\therefore \) \(2y = (2 + \pi)x - \frac{\pi^2}{4} \)

 \(\therefore \) \((2 + \pi)x - 2y = \frac{\pi^2}{4} \) as required
6 \[y = \frac{ax + b}{\sqrt{x}} = a\sqrt{x} + \frac{b}{\sqrt{x}} = ax^{\frac{1}{2}} + bx^{-\frac{1}{2}} \]

\[\therefore \frac{dy}{dx} = \frac{a}{2}x^{-\frac{1}{2}} - \frac{b}{2}x^{-\frac{3}{2}} = \frac{a}{2\sqrt{x}} - \frac{b}{2x\sqrt{x}} \]

The equation of the tangent at \(x = 1 \)

\[\text{is } 2x - y = 1 \]

or \(y = 2x - 1 \)

so the gradient of the tangent is 2

\[\therefore \text{at } x = 1, \frac{dy}{dx} = \frac{a}{2} - \frac{b}{2} = 2 \]

\[\therefore a - b = 4 \]

\[\therefore a = b + 4 \quad \ldots \quad (1) \]

Also at \(x = 1 \), the tangent touches the curve

\[\frac{a(1) + b}{\sqrt{1}} = 2(1) - 1 \]

\[\therefore a + b = 1 \]

\[\therefore b + 4 + b = 1 \quad \text{\{using \((1) \)} \]

\[\therefore 2b = -3 \]

\[\therefore b = -\frac{3}{2} \quad \text{and} \quad a = 4 - \frac{3}{2} = \frac{5}{2} \]

7 \[f(x) = 4\ln(2x), \quad P(1, 4\ln 2) \]

\[\therefore f'(x) = 4 \times \frac{2}{2x} = \frac{4}{x} \]

\[\therefore \text{at } x = 1, \quad f'(1) = \frac{4}{1} = 4 \]

\[\therefore \text{the tangent has equation} \]

\[\frac{y - 4\ln 2}{x - 1} = 4 \]

\[\therefore y - 4\ln 2 = 4x - 4 \]

\[\therefore y = 4x + 4\ln 2 - 4 \]

8 a \[f(x) = \frac{e^x}{x - 1} \]

Now \(f(0) = \frac{e^0}{-1} = -1 \) so the \(y \)-intercept is \(-1\).

b \(f(x) \) is defined for all \(x \neq 1 \).

c \[f'(x) = \frac{e^x(x - 1) - e^x(1)}{(x - 1)^2} \quad \text{\{quotient rule\}} \]

\[= \frac{e^x(x - 2)}{(x - 1)^2} \quad \text{and has sign diagram:} \]

\[- \quad \frac{1}{1} \quad - \frac{1}{2} \quad + \quad x \]

\[\therefore f'(x) \leq 0 \quad \text{for } x < 1 \quad \text{and} \quad 1 < x \leq 2 \quad \text{and} \quad f'(x) \geq 0 \quad \text{for } x \geq 2 \]

\[\therefore f(x) \text{ is decreasing for } x < 1 \quad \text{and} \quad 1 < x \leq 2, \quad \text{and increasing for } x \geq 2. \]

\[f''(x) = \frac{[e^x(x - 2) + e^x(1)](x - 1)^2 - e^x(x - 2)[2(x - 1)^4(1)]}{(x - 1)^4} \quad \text{\{product and quotient rules\}} \]

\[= \frac{e^x(x - 2) + e^x(x - 1)^2 - 2e^x(x - 2)(x - 1)}{(x - 1)^4} \]

\[= \frac{e^x(x - 1)(x - 1)^2 - 2e^x(x - 2)(x - 1)}{(x - 1)^4} \]

\[= \frac{e^x(x - 1)[(x - 1)^2 - 2(x - 2)]}{(x - 1)^4} \]

\[= \frac{e^x(x - 1)[x^2 - 2x + 1 - 2x + 4]}{(x - 1)^4} \]

\[= \frac{e^x(x^2 - 4x + 5)}{(x - 1)^3} \quad \text{where the quadratic term has } \Delta < 0 \]

The sign diagram of \(f''(x) \) is: \[- \quad \frac{1}{1} \quad + \quad x \]

\[\therefore f''(x) > 0 \quad \text{for } x > 1 \]

and \(f''(x) < 0 \) for \(x < 1 \).

\[\therefore f(x) \text{ is concave down for all } x < 1 \]

and concave up for all \(x > 1 \).
9. \(y = 2x^3 + ax + b \) \[\frac{dy}{dx} = 6x^2 + a \]

Now as the gradient at \((-2, 33)\) is 10,

at \(x = -2 \), \[\frac{dy}{dx} = 10 \]

\[\therefore \ 10 = 6(-2)^2 + a \]

\[\therefore \ a = -14 \]

\[\therefore \ y = 2x^3 - 14x + b \]

10. \[y = \frac{a}{(x + 2)^2} = a(x + 2)^{-2} \]

The gradient of the line (AB) is

\[\frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 4}{0 - 2} = \frac{4}{-2} = -2 \]

\[\therefore \ \text{the equation of the tangent is} \]

\[y - 8 = -2 \text{ or } y = -2x + 8 \]

Now \[\frac{dy}{dx} = -2a(x + 2)^{-3} \]

so for the given tangent, \(-2a(x + 2)^{-3} = -2\)

\[\therefore \ a = (x + 2)^3 \quad (1) \]

The line (AB) meets the curve where

\[-2x + 8 = \frac{a}{(x + 2)^2} \]

\[\therefore -2x + 8 = \frac{(x + 2)^3}{(x + 2)^2} \quad \{\text{using (1)}\} \]

\[\therefore 2x + 8 = x + 2 \]

\[\therefore 3x = -6 \]

\[\therefore x = 2 \]

and so \(a = (2 + 2)^3 = 64 \)

11. \[y = \frac{5}{\sqrt{x}} = 5x^{-\frac{1}{2}} \]

\[\therefore \frac{dy}{dx} = -\frac{5}{2}x^{-\frac{3}{2}} \]

\[\therefore \ \text{the gradient of the tangent at the point} \]

\((1, 5) \) is \(-\frac{5}{2}(1)^{-\frac{3}{2}} = -\frac{5}{2} \)

\[\therefore \ \text{the equation of the tangent is} \]

\[y - 5 = -\frac{5}{2}(x - 1) \]

\[\therefore \ y = -\frac{5}{2}x + \frac{15}{2} \]

Then, since \((-2, 33)\) lies on the curve,

at \(x = -2 \), \[y = 33 \]

\[\therefore 2(-2)^3 - 14(-2) + b = 33 \]

\[\therefore -16 + 28 + b = 33 \]

\[\therefore b = 21 \]

12. At \(x = A \), \(f'(x) = 0 \) and \(f''(x) = 0 \)

\[\therefore \ f(x) \ \text{has a stationary inflection point at } x = A. \]

At \(x = B \), \(f''(x) = 0 \) but \(f'(x) \neq 0 \)

\[\therefore \ f(x) \ \text{has a non-stationary inflection point at } x = B. \]

\(f'(x) \) is above the \(x \)-axis for \(x \leq C \), and below the \(x \)-axis for \(x \geq C \)

\[\therefore \ f(x) \ \text{is increasing for } x \leq C \ \text{and decreasing for } x \geq C, \ \text{so } f(x) \ \text{has a local maximum at } x = C. \]
13 \[y = \ln(x^2 + 3) \quad \therefore \quad \frac{dy}{dx} = \frac{2x}{x^2 + 3} \]

When \(x = 0 \), \(\frac{dy}{dx} = 0 \) so the gradient of the tangent at this point is 0.

But when \(x = 0 \), \(y = \ln(0 + 3) = \ln 3 \)

\[\therefore \text{the tangent is } y = \ln 3 \text{ which does not cut the x-axis.} \]

REVIEW SET 16B

1 \[y = x^3 - 3x^2 - 9x + 2 \quad \therefore \quad \frac{dy}{dx} = 3x^2 - 6x - 9 \]

Horizontal tangents occur when \(\frac{dy}{dx} = 0 \)

\[\therefore 3x^2 - 6x - 9 = 0 \]

\[\therefore x^2 - 2x - 3 = 0 \]

\[\therefore (x - 3)(x + 1) = 0 \]

\[\therefore x = 3 \text{ or } x = -1 \]

When \(x = 3 \), the horizontal tangent has equation \(y = -25 \).

When \(x = -1 \), the horizontal tangent has equation \(y = 7 \).

2 Consider the tangent to \(y = x^2\sqrt{1-x} \) at \(x = -3 \).

When \(x = -3 \), \(y = (-3)^2\sqrt{1-(-3)} = 9\sqrt{4} = 18 \) \(\{y \geq 0\} \)

\[\therefore \text{the point of contact is } (-3, 18). \]

Also, \(y = x^2\sqrt{1-x} \) is a product with \(u = x^2 \) and \(v = (1-x)^{\frac{1}{2}} \)

\[\therefore u' = 2x \text{ and } v' = \frac{1}{2}(1-x)^{-\frac{1}{2}}(-1) \]

\[\therefore \frac{dy}{dx} = 2x(1-x)^{\frac{1}{2}} - x^2(\frac{1}{2})(1-x)^{-\frac{1}{2}} \]

\[\therefore \text{at } x = -3, \frac{dy}{dx} = 2(-3)(1-(-3))^{\frac{1}{2}} - (-3)^2(\frac{1}{2})(1-(-3))^{-\frac{1}{2}} \]

\[= -6(2) - 9(\frac{1}{2})(\frac{1}{2}) \]

\[= -\frac{57}{4} \]

\[\therefore \text{the tangent at } (-3, 18) \text{ has equation } \frac{y-18}{x-(-3)} = -\frac{57}{4} \]

\[\therefore 4y - 72 = -57x - 171 \]

\[\therefore 4y = -57x - 99 \]

Now when \(x = 0 \), \(y = -\frac{99}{4} \) and when \(y = 0 \), \(x = -\frac{99}{57} \)

\[\therefore \text{the area of } \triangle OAB = \frac{1}{2} \left(\frac{98}{4} \right) \left(\frac{99}{57} \right) = \frac{3247}{18} \approx 21.5 \text{ units}^2 \]

3 \[a \quad f(x) = x^3 + ax, \quad a < 0 \]

\[\therefore f'(x) = 3x^2 + a \]

\(f(x) \) has a turning point at \(x = \sqrt{2} \), so \(f'(\sqrt{2}) = 0 \)

\[\therefore 3(\sqrt{2})^2 + a = 0 \]

\[\therefore a = -6 \]

\[b \quad f'(x) = 3x^2 - 6 = 3(x^2 - 2) = 3(x + \sqrt{2})(x - \sqrt{2}) \]

\[\therefore f'(x) \text{ has sign diagram:} \]

\[\therefore f(x) \text{ has a local maximum at } (-\sqrt{2}, (-\sqrt{2})^3 - 6(-\sqrt{2})) \text{ or } (-\sqrt{2}, 4\sqrt{2}) \]

and a local minimum at \((\sqrt{2}, (\sqrt{2})^3 - 6\sqrt{2})\) or \((\sqrt{2}, -4\sqrt{2})\).
4 \[f(x) = e^{4x} + px + q \]
\[\therefore f'(x) = 4e^{4x} + p \]
At the point where \(x = 0 \), the tangent to \(f(x) \) has equation \(y = 5x - 7 \), so \(f'(0) = 5 \)
\[\therefore 4e^0 + p = 5 \]
\[\therefore p = 1 \]

The tangent meets \(f(x) \) when \(x = 0 \) and \(y = 5(0) - 7 = -7 \), so \((0, -7)\) must lie on \(f(x) \) too.
\[\therefore e^{4(0)} + p(0) + q = -7 \]
\[\therefore 1 + q = -7 \]
\[\therefore q = -8 \]

5 Consider the tangent to \(y = 2x^3 + 4x - 1 \) at \((1, 5)\).
\[\frac{dy}{dx} = 6x^2 + 4 \quad \therefore \text{at} \quad x = 1, \quad \frac{dy}{dx} = 6(1)^2 + 4 = 10 \]
\[\therefore \text{the tangent has equation} \quad \frac{y - 5}{x - 1} = 10 \quad \text{or} \quad y = 10x - 5 \]

Now the tangent meets the curve again where \(10x - 5 = 2x^3 + 4x - 1 \)
\[\therefore 2x^3 - 6x + 4 = 0 \]
\[\therefore x^3 - 3x^2 + 2 = 0 \]
We know that \((x - 1)^3\) is a factor since the line is tangent to the curve at \(x = 1 \).
Consequently, \(x^3 - 3x^2 + 2 = (x - 1)^3(x + 2) = 0 \) \{since the constant term is 2\}
Thus \(x = -2 \) is the other solution and when \(x = -2 \), \(y = 2(-2)^3 + 4(-2) - 1 = -25 \)
\[\therefore \text{the tangent meets the curve again at} \quad (-2, -25) \]

6 Consider \(y = 4(\alpha x + 1)^{-2} \).
When \(x = 0 \), \(y = 4(0 + 1)^{-2} = 4 \), so the point of contact is \((0, 4)\).
Now \[\frac{dy}{dx} = -8(\alpha x + 1)^{-3}(\alpha) = \frac{-8\alpha}{(\alpha x + 1)^3} \quad \therefore \text{at} \quad x = 0, \quad \frac{dy}{dx} = -8\alpha \]
\[\therefore \text{the tangent has equation} \quad \frac{y - 4}{x - 0} = -8\alpha \quad \text{or} \quad y - 4 = -8\alpha x \]
This tangent passes through \((1, 0)\), so \(0 - 4 = -8\alpha \) \(\therefore \alpha = \frac{1}{2} \)

7 \[f(x) = e^x - x \]
\[a \quad f'(x) = e^x - 1 \]
so \(f'(x) = 0 \) when \(e^x = 1 \)
\[\therefore x = 0 \]
\[\therefore \quad \text{Sign diagram of} \quad f'(x) \quad \text{is:} \]

Now \(f(0) = e^0 - 0 = 1 \)
\[\therefore \text{there is a local minimum at} \quad (0, 1) \]
\[f'''(x) = e^x \]
\[\therefore f'''(x) > 0 \text{ for all } x \]
\[\therefore f(x) \text{ is concave up for all } x \]

Since a local minimum exists at \((0, 1)\),
\[f(x) \geq 1 \text{ for all } x \]
\[\therefore e^x - x \geq 1 \]
\[\therefore e^x \geq x + 1 \text{ for all } x \]

8 Consider \[y = \frac{x + 1}{x^2 - 2} \]
When \(x = 1 \), \[y = \frac{1 + 1}{1^2 - 2} = -2 \]
\[\therefore \text{ the point of contact is } (1, -2). \]
\[y = \frac{x + 1}{x^2 - 2} \text{ is a quotient with } \]
\[u = x + 1 \quad \text{and} \quad v = x^2 - 2 \]
\[u' = 1 \quad \text{and} \quad v' = 2x \]
\[\frac{dy}{dx} = \frac{(x^2 - 2) - (x + 1)(2x)}{(x^2 - 2)^2} \text{ quotient rule} \]
\[\therefore \text{ at } x = 1, \quad \frac{dy}{dx} = \frac{(1 - 2) - 2(1 + 1)}{(1 - 2)^2} \]
\[= \frac{-1 - 4}{1} = -5 \]
\[\therefore \text{ the normal at } (1, -2) \text{ has gradient } \frac{1}{5}. \]
So the normal has equation \[y - (-2) = \frac{1}{5}(x - 1) \]
\[\therefore 5y + 10 = x - 1 \]
\[\therefore y = \frac{1}{5}x - \frac{11}{5} \quad \text{ (or } x - 5y = 11) \]

10 Let \[g(x) = ax^2 + bx + c. \]
\[g(x) \text{ has } y\text{-intercept } (0, 3), \text{ so } g(0) = a(0)^2 + b(0) + c = 3 \]
\[\therefore c = 3 \]
\[\therefore g(x) = ax^2 + bx + 3 \]
The point \((2, 7)\) lies on \(g(x)\), so \[g(2) = a(2)^2 + b(2) + 3 = 7 \]
\[\therefore 4a + 2b = 4 \quad \ldots \quad (1) \]
Also, \[g'(x) = 2ax + b \]
\[\therefore g'(2) = 2a(2) + b = 4a + b \]
\[\therefore \text{ the gradient of the tangent to } g(x) \text{ at } (2, 7) \text{ is } 4a + b. \]
But, the tangent at \((2, 7)\) passes through \((0, 11)\), so the gradient \[\frac{7 - 11}{2 - 0} = -2 \]
\[\therefore 4a + b = -2 \quad \ldots \quad (2) \]
Solving (1) and (2) simultaneously,
\[
\begin{align*}
4a + 2b &= 4 \\
4a + b &= -2
\end{align*}
\]
subtracting: \[b = 6 \]
Using (2), \[4a + 6 = -2, \] so \[a = -2 \]
So, \[g(x) = -2x^2 + 6x + 3 \]
11 a \[f(x) = \sqrt{\cos x}, \quad 0 \leq x \leq 2\pi \]
\[f(x) \text{ is defined when } \cos x \geq 0, \]
which is when \(0 \leq x \leq \frac{\pi}{2} \)
and \(\frac{3\pi}{2} \leq x \leq 2\pi \).

b \[f(x) = (\cos x)^{\frac{1}{2}} \]
\[\therefore f'(x) = \frac{1}{2} (\cos x)^{-\frac{1}{2}} (-\sin x) \]
\[= \frac{-\sin x}{2\sqrt{\cos x}} \]
\[\therefore f'(x) = 0 \quad \text{when } -\sin x = 0 \]
For \(0 \leq x \leq 2\pi \), this is when \(x = 0, \pi, 2\pi \).
Sign diagram for \(f'(x) \) is:

\[f(x) \text{ is increasing for } \frac{3\pi}{2} < x < 2\pi \]
and decreasing for \(0 < x < \frac{\pi}{2} \).

12 \(f(x) \) has a turning point at \(x = 0 \)
\[\therefore f'(0) = 0 \]
\(f(x) \) is increasing for \(x \geq 0 \),
except at the asymptote,
so \(f'(x) \) is positive for \(x \geq 0 \).
\(f(x) \) is decreasing for \(x \leq 0 \),
except at the asymptote,
so \(f'(x) \) is negative for \(x \leq 0 \).
As \(x \to \pm\infty \), \(f(x) \) becomes
closer to horizontal so \(f'(x) \to 0 \).

13 a \[y = \frac{4}{x} \]
\[y = \frac{4}{x} \text{ cuts the } x\text{-axis when } y = 0 \]
\[\therefore -\frac{4}{k^2} x + \frac{8}{k} = 0 \]
\[\therefore \frac{4}{k^2} x = \frac{8}{k} \]
\[\therefore x = 2k \]
\[y = \frac{4}{k^2} x + \frac{8}{k} \text{ cuts the } y\text{-axis when } x = 0 \]
\[\therefore y = \frac{8}{k} \]
\[\therefore \text{A is at } (2k, 0) \]
\[\therefore \text{B is at } (0, \frac{8}{k}) \]

b For \(f(x) = \frac{4}{x} = 4x^{-1} \),
\[f'(x) = -4x^{-2} = -\frac{4}{x^2} \quad \text{and } f'(k) = -\frac{4}{k^2}, \quad k > 0 \]
\[\therefore \text{the gradient of the tangent to } f(x) \text{ at } (k, \frac{4}{k}) \text{ is } -\frac{4}{k^2} \]
\[\therefore \text{the equation of the tangent is } \frac{y - \frac{4}{k}}{x - k} = -\frac{4}{k^2} \]
\[\therefore ky^2 - 4k = -4x + 4k \]
\[\therefore k^2 y = -4x + 8k \]
\[\therefore y = \frac{4}{k^2} x + \frac{8}{k} \]

d Area of triangle OAB = \(\frac{1}{2} (2k) \left(\frac{8}{k} \right) = 8 \text{ units}^2 \)
The gradient of the tangent to \(f(x) \) at \(\left(k, \frac{4}{k} \right) \) is \(-\frac{4}{k^2} \)

\[
\therefore \quad \text{the gradient of the normal to } f(x) \text{ at } \left(k, \frac{4}{k} \right) \text{ is } \frac{k^2}{4}
\]

\[
\therefore \quad \text{the equation of the normal is } \frac{y - \frac{4}{k}}{x - k} = \frac{k^2}{4}
\]

\[
\therefore \quad 4y - \frac{16}{k} = k^2x - k^3
\]

\[
\therefore \quad 4ky - k^3x = 16 - k^4
\]

This normal passes through \((1, 1)\), so \(4k - k^3 = 16 - k^4\)

\[
\therefore \quad k^4 - k^3 + 4k - 16 = 0
\]

\[
\therefore \quad (k - 2)(k + 2)(k^2 - k + 4) = 0 \quad \{\text{using technology}\}
\]

\[
\therefore \quad k = \pm 2
\]

But \(k > 0 \), so \(k = 2 \)

REVIEW SET 16C

1. Consider the normal to the curve \(y = \frac{1}{\sqrt{x}} \) at \(x = 4 \).

When \(x = 4 \), \(y = \frac{1}{\sqrt[4]{4}} = \frac{1}{2} \), so the point of contact is \((4, \frac{1}{2})\).

Now \(\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{3}{2}} \). \(\therefore \) at \(x = 4 \), \(\frac{dy}{dx} = -\frac{1}{2} \left(4^{-\frac{3}{2}} \right) = -\frac{1}{2} \left(\frac{1}{8} \right) = -\frac{1}{16} \)

\(\therefore \) the normal at \((4, \frac{1}{2})\) has gradient 16.

So the equation is \(\frac{y - \frac{1}{2}}{x - 4} = 16 \)

\[
\therefore \quad y - \frac{1}{2} = 16x - 64
\]

\[
\therefore \quad y = 16x - \frac{127}{2}
\]

2. a. The tangent shown on the graph passes through \((0, 5)\) and \((5, 0)\).

\(\therefore \) the gradient of the tangent is \(\frac{0 - 5}{5 - 0} = -1 \), so \(f'(5) = -1 \).

Also, since the tangent passes through \((0, 5)\), it has equation \(\frac{y - 5}{x - 0} = -1 \)

\[
\therefore \quad y - 5 = -x
\]

\[
\therefore \quad y = -x + 5
\]

So when \(x = 3 \), \(y = -3 + 5 = 2 \)

\(\therefore \) the point of contact is \((3, 2)\), and hence \(f(3) = 2 \).

b. \(f(x) \) has the form \(f(x) = ax^2 + bx + c \)

The \(y \)-intercept is 14. \(\therefore \) \(f(0) = 14 \)

\[
\therefore \quad a(0)^2 + b(0) + c = 14
\]

\[
\therefore \quad c = 14
\]

Also, \(f'(3) = 2 \)

\[
\therefore \quad a(3)^2 + b(3) + 14 = 2
\]

\[
\therefore \quad 9a + 3b = -12 \quad \ldots \quad (1)
\]

\[
\therefore \quad f'(3) = -1
\]

and \(f''(x) = 2ax + b \)

\[
\therefore \quad 2a(3) + b = -1
\]

\[
\therefore \quad 6a + b = -1
\]

\[
\therefore \quad b = -6a - 1 \quad \ldots \quad (2)
\]

Substituting (2) into (1),

\[
9a + 3(-6a - 1) = -12
\]

\[
\therefore \quad 9a - 18a - 3 = -12
\]

\[
\therefore \quad -9a = -9
\]

\[
\therefore \quad a = 1
\]

Using (2), \(b = -6(1) - 1 \)

\[
\therefore \quad b = -7
\]

So, \(f(x) = x^2 - 7x + 14 \)
3. \(y = x^3 + ax + b \) \quad \Rightarrow \quad \frac{dy}{dx} = 3x^2 + a \\
\therefore \text{ at } x = 1, \quad \frac{dy}{dx} = 3 + a \\
\text{The equation of the tangent at } x = 1 \text{ is } y = 2x, \text{ so the gradient is 2.} \\
\therefore 3 + a = 2 \quad \text{and so } a = -1 \\
\text{Also at } x = 1, \text{ the tangent touches the curve.} \\
\therefore x^3 + ax + b = 2x \quad \text{when } x = 1 \\
\therefore (1)^3 + (-1)(1) + b = 2(1) \\
\therefore 1 - 1 + b = 2 \\
\therefore b = 2 \\

4. a. \(y = x^3 + ax^2 - 4x + 3 \) \quad \therefore \frac{dy}{dx} = 3x^2 + 2ax - 4 \\
The tangent at \(x = 1 \) is parallel to \(y = 3x \), so when \(x = 1, \quad \frac{dy}{dx} = 3 \\
\therefore 3 = 3(1)^2 + 2a(1) - 4 \\
\therefore 2a = 4 \\
\therefore a = 2 \\
\text{When } x = 1, \quad y = 1^3 + 2(1)^2 - 4(1) + 3 = 2 \\
\text{The contact point is } (1, 2) \text{ and since the gradient is 3, the tangent at } (1, 2) \text{ has equation} \\
\frac{y - 2}{x - 1} = 3 \\
\therefore y - 2 = 3x - 3 \\
\therefore y = 3x - 1 \\
b. \text{The tangent meets the curve where } x^3 + 2x^2 - 4x + 3 = 3x - 1 \\
\therefore x^3 + 2x^2 - 7x + 4 = 0 \\
\text{Since the line touches the curve at } x = 1, \quad (x - 1)^2 \text{ must be a factor.} \\
\text{Consequently, } x^3 + 2x^2 - 7x + 4 = (x - 1)^2(x + 4) = 0 \quad \{\text{since the constant term is 4}\} \\
\therefore \text{the curve cuts the tangent when } x = -4. \\
\text{When } x = -4, \quad y = (-4)^3 + 2(-4)^2 - 4(-4) + 3 = -13 \\
\therefore \text{the curve cuts the tangent at } (-4, -13). \\

5. \quad y = \ln(x^4 + 3) \\
\therefore \frac{dy}{dx} = \frac{4x^3}{x^4 + 3} \\
\therefore \text{when } x = 1, \quad \frac{dy}{dx} = \frac{4(1)^3}{1^4 + 3} = 1 \quad \text{and } \quad y = \ln(1^4 + 3) = \ln 4 \\
\therefore \text{the tangent has equation } \frac{y - \ln 4}{x - 1} = 1 \quad \text{or } \quad y = x - 1 + \ln 4 \\
\text{Now when } x = 0, \quad y = \ln 4 - 1, \text{ so the tangent cuts the } y\text{-axis at } (0, \ln 4 - 1). \\

6. a. \quad f(x) = 2x^3 - 3x^2 - 36x + 7 \\
\therefore f'(x) = 6x^2 - 6x - 36 \\
\quad = 6(x^2 - x - 6) \\
\quad = 6(x - 3)(x + 2) \quad \text{with sign diagram:} \\
\text{Now } f(-2) = 51, \quad f(3) = -74, \text{ so there is a local maximum at } (-2, 51), \text{ and a local} \\
\text{minimum at } (3, -74). \\
f''(x) = 12x - 6 \\
\quad = 6(2x - 1) \quad \text{with sign diagram:} \\
\text{Now } f\left(\frac{1}{2}\right) = -\frac{23}{2}, \text{ so there is a non-stationary inflection at } \left(\frac{1}{2}, -\frac{23}{2}\right).
\[f(x) \] is increasing when \(x \leq -2 \) or \(x \geq 3 \),
and decreasing when \(-2 \leq x \leq 3 \).

\(f(x) \) is concave up when \(x \geq \frac{1}{2} \),
and concave down when \(x \leq \frac{1}{2} \).

7. Consider the normal to \(f(x) = \frac{3x}{1 + x} \) at \((2, 2)\).

\(f(x) \) is a quotient with \(u = 3x \) and \(v = 1 + x \)
\[u' = 3 \quad \text{and} \quad v' = 1 \]
\[f'(x) = \frac{3(1 + x) - 1(3x)}{(1 + x)^2} = \frac{3}{(1 + x)^2} \quad \{ \text{quotient rule} \} \]
\[f'(2) = \frac{3}{9} = \frac{1}{3} \]
\(\therefore \) the normal at \((2, 2)\) has gradient \(-3\).

So, the equation of the normal is
\[\frac{y - 2}{x - 2} = -3 \]
\[\therefore y - 2 = -3(x - 2) \]
\[\therefore y = -3x + 8 \]

When \(x = 0 \), \(y = 8 \) and when \(y = 0 \), \(x = \frac{8}{3} \)
\(\therefore \) B and C are at \((0, 8)\) and \(\left(\frac{8}{3}, 0\right)\),
and the distance \(BC = \sqrt{\left(0 - \frac{8}{3}\right)^2 + (8 - 0)^2} = \sqrt{\frac{64}{9} + 64} = \sqrt{\frac{512}{9}} = \frac{8\sqrt{16}}{3}\) units.

8. \(f(x) = x^3 - 4x^2 + 4x \)
a. \(f(0) = 0 \), so the y-intercept is 0.
\[f(x) \] cuts the x-axis when \(y = 0 \)
\[x(x - 2)^2 = 0 \]
\(\therefore \) the x-intercepts are 0 and 2.

b. \(f'(x) = 3x^2 - 8x + 4 \)
\(= (3x - 2)(x - 2) \)
which is 0 when \(x = \frac{2}{3} \) or 2

Sign diagram of \(f'(x) \):

Now \(f\left(\frac{2}{3}\right) = \frac{20}{27} \), so there is a local maximum at \(\left(\frac{2}{3}, \frac{20}{27}\right)\), and a local minimum at \((2, 0)\).

\(f''(x) = 6x - 8 = 2(3x - 4) \)

Sign diagram of \(f''(x) \):

Now \(f\left(\frac{2}{3}\right) = \frac{16}{27} \), so there is a non-stationary inflection at \(\left(\frac{4}{3}, \frac{16}{27}\right)\).

9. \(y = \frac{1}{\sin x} = (\sin x)^{-1} \)
When \(x = \frac{\pi}{3} \), \(y = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{2}{\sqrt{3}} \)
\[\therefore \frac{dy}{dx} = -(\sin x)^{-2}(\cos x) \]
\[= -\frac{\cos x}{\sin^2 x} \]
\[\therefore \text{the tangent has equation} \quad \frac{y - \frac{2}{\sqrt{3}}}{x - \frac{\pi}{3}} = -\frac{2}{3} \text{ which is} \]
\[3y - 2\sqrt{3} = -2x + \frac{2\pi}{3} \]
\[\text{or} \quad 2x + 3y = 2\sqrt{3} + \frac{2\pi}{3} \]
\[y = \cos\left(\frac{x}{2}\right) \quad \text{When} \quad x = \frac{\pi}{2}, \quad y = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \]
\[\frac{dy}{dx} = -\frac{1}{2} \sin\left(\frac{x}{2}\right) \quad \text{and} \quad \frac{dy}{dx} = -\frac{1}{2} \sin\left(\frac{x}{4}\right) = -\frac{1}{2\sqrt{2}} \]
\[\therefore \text{the normal has gradient} \ 2\sqrt{2}, \ \text{and its equation is} \quad \frac{y - \frac{1}{\sqrt{2}}}{x - \frac{\pi}{2}} = 2\sqrt{2} \]
\[\therefore \quad y - \frac{1}{\sqrt{2}} = 2\sqrt{2}x - \pi\sqrt{2} \]
\[\therefore \quad y - 2\sqrt{2}x = \frac{1}{\sqrt{2}} - \pi\sqrt{2} \]
\[\text{or} \quad \sqrt{2}y - 4x = 1 - 2\pi \]

10
\[f(x) = 3x^3 + ax^2 + b \]
\[\therefore f'(x) = 9ax^2 + 2ax \]
Since the tangent at \((-2, 14)\) has gradient 0,
\[f'(-2) = 0 \]
\[\therefore 36 - 4a = 0 \]
\[\therefore a = 9 \]
As the point \((-2, 14)\) lies on the curve,
\[14 = 3(-2)^3 + 9(-2)^2 + b \]
\[\therefore b = 14 + 24 - 36 \]
\[\therefore b = 2 \]
\[\therefore f'(x) = 9x^2 + 18x \]
\[\therefore f''(x) = 18x + 18 \quad \text{and so} \quad f''(-2) = -36 + 18 = -18 \]

11
The curves \[y = \sqrt{3x + 1} \quad \text{and} \quad y = \sqrt{5x - x^2} \] meet when \[\sqrt{3x + 1} = \sqrt{5x - x^2} \]
Squaring both sides,
\[3x + 1 = 5x - x^2 \]
\[\therefore x^2 - 2x + 1 = 0 \]
\[\therefore (x - 1)^2 = 0 \]
\[\therefore x = 1 \]
When \(x = 1, \ y = \sqrt{3 + 1} = 2, \) so the curves meet at \((1, 2)\).
Now for \(y = \sqrt{3x + 1} = (3x + 1)^{\frac{1}{2}} \)
Check: \(y = \sqrt{5x - x^2} = (5x - x^2)^{\frac{1}{2}} \)
\[\frac{dy}{dx} = \frac{1}{2}(3x + 1)^{-\frac{1}{2}} (3) \]
\[\frac{dy}{dx} = \frac{1}{2}(5x - x^2)^{-\frac{1}{2}} (5 - 2x) = \frac{5 - 2x}{2\sqrt{5x - x^2}} \]
\[\therefore \text{at} \ (1, 2), \ \frac{dy}{dx} = \frac{3}{4} \]
\[\therefore \text{at} \ (1, 2), \ \frac{dy}{dx} = \frac{5 - 2}{2\sqrt{5 - 1}} = \frac{3}{4} \quad \checkmark \]
\[\therefore \text{the curves have a common tangent at their point of intersection.} \]
The equation of the common tangent at \((1, 2)\) is
\[\frac{y - 2}{x - 1} = \frac{3}{4} \]
\[\therefore 4(y - 2) = 3(x - 1) \]
\[\therefore 4y = 3x + 5 \]

12
\(a \)
\[f(x) = x + \ln x \quad \text{is defined when} \quad x > 0 \]
\[f'(x) = 1 + \frac{1}{x} = \frac{x + 1}{x} \quad \text{which has sign diagram:} \]
\[\begin{array}{c}
0 \\
+ \quad \rightarrow \quad x
\end{array} \]
\[\therefore \quad f'(x) \quad \text{is increasing for all} \quad x > 0. \]
\[f''(x) = -\frac{1}{x^2} \quad \text{which has sign diagram:} \]
\[\begin{array}{c}
0 \\
- \quad \rightarrow \quad x
\end{array} \]
\[\therefore \quad f'(x) \quad \text{is concave down for all} \quad x > 0. \]
\[f(x) = x + \ln x \]

\[f'(1) = 1 + \frac{1}{1} = 2 \]

\[\therefore \text{the normal has gradient } -\frac{1}{2} \]

\[\therefore \text{the normal has equation } y - 1 = -\frac{1}{2}(x - 1) \]

\[\therefore 2y - 2 = -x + 1 \]

\[\therefore x + 2y = 3 \]

\[\text{At } x = B, \quad f''(x) = 0 \quad \text{but } f'(x) \neq 0 \]

\[\therefore \text{f(x) has a non-stationary inflection point at } x = B. \]

\[f'(x) \text{ is above the x-axis for } x < A \text{ and } x > C, \quad \text{and below the x-axis for } A < x < C \]

\[\therefore \text{f(x) is increasing for } x < A, \text{ decreasing for } A < x < C, \text{ then increasing for } x > C \]

\[\therefore \text{f(x) has a local maximum at } x = A \text{ and a local minimum at } x = C. \]