1. Find the constants a, b, c, d in the equations of the two graphs below:

 (a) $y = a \sin (bx)$

 (b) $y = \cos(x^\circ - d^\circ) + c$

 (accessible to students on the path to grade 5 or 6) [7 marks]

2. Find the exact period of the function $f(x) = \sin 4x + \sin 6x$.

 (accessible to students on the path to grade 3 or 4) [3 marks]
3. The depth of water in a harbour varies with time as \(h = 8.6 + 1.2 \sin \left(\frac{\pi}{6} t \right) \), where \(h \) is the depth measured in metres and \(t \) is time in hours after midnight.

 (a) Find the depth of the water at 2 p.m.

 (b) What is the least depth of the water?

 (c) At what times is the depth of the water 8.1 m?

 (d) A ship can enter the harbour when the water depth is above 9 m. Find the times when the ship can enter the harbour.

 (accessible to students on the path to grade 3 or 4) [8 marks]

4. Do not use a calculator to answer this question.

 Let \(f(x) = 3 \sin \left(x + \frac{\pi}{4} \right) \) for \(x \in [0, 2\pi] \).

 (a) Find the exact value of \(f \left(\frac{\pi}{12} \right) \).

 (accessible to students on the path to grade 5 or 6)

 (b) Find the exact values of all the zeroes of \(f \).

 (c) State the minimum value of \(5 - f(x) \).

 Another function is defined by \(g(x) = \tan \left(x - \frac{\pi}{4} \right) \) for \(x \in [0, 2\pi] \).

 (accessible to students on the path to grade 3 or 4)

 (d) Find the exact value of \(g \left(\frac{\pi}{2} \right) \).

 (e) By sketching graphs, or otherwise, find the number of solutions of the equation \(f(x) = g(x) \).

 (accessible to students on the path to grade 5 or 6) [12 marks]