Question 1

[Maximum mark: 6]

The following box-and-whisker plot shows the number of tweets sent by people in a coffee shop on a particular day.

(a) Find the value of the interquartile range. [2]

(b) One person sent k tweets, where $k > 7$. Given that k is an outlier, find the least value of k. [4]

Question 2

[Maximum mark: 6]

Consider the following sequence of figures.

Figure 1 contains 6 line segments.

(a) Given that Figure n contains 101 line segments, show that $n = 20$. [3]

(b) Find the total number of line segments in the first 20 figures. [3]

Question 3

[Maximum mark: 7]

Let $f(x) = ax^2 - 24x + c$. A horizontal line, L, intersects the graph of f at $x = 1$ and $x = 7$.

(a) (i) The equation of the axis of symmetry is $x = h$. Find h. [4]

(ii) Hence, show that $a = 3$. [3]

(b) The equation of L is $y = 6$. Find the value of c. [3]
Question 4

Maximum mark: 7

The following diagram shows an archery target which is divided into three regions A, B and C.

A contest consists of an archer shooting one arrow at the target. The probability of hitting each region is given in the following table.

<table>
<thead>
<tr>
<th>Region</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>1/24</td>
<td>4/24</td>
<td>7/24</td>
</tr>
</tbody>
</table>

(a) Find the probability that the arrow does not hit the target. [3]

The archer scores points as shown in the following table.

<table>
<thead>
<tr>
<th>Region</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Outside Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>10</td>
<td>6</td>
<td>k</td>
<td>−4</td>
</tr>
</tbody>
</table>

(b) Given that the contest is fair, find the value of k. [4]

Question 5

Maximum mark: 6

Five equilateral triangles, each with side length 4 cm, are arranged to form a truss bridge model. This is shown in the following diagram.

The vectors \(\mathbf{a}, \mathbf{b} \) and \(\mathbf{c} \) are shown on the diagram.

Find \(\mathbf{a} \cdot (\mathbf{a} + \mathbf{b} + 2\mathbf{c}) \).

Question 6

Maximum mark: 7

The expression \(8 \sin x \cos x \) can be written in the form \(p \sin qx \).

(a) Find the value of \(p \) and the value of \(q \). [3]

(b) Hence or otherwise, solve the equation \(8 \sin x \cos x = 2\sqrt{3} \), for \(\frac{\pi}{4} \leq x \leq \frac{\pi}{2} \). [4]
Question 7
May 2019 Maths SL Prediction Exams → Paper 1

[Maximum mark: 7]

Let \(f(x) = 6x - \ln x \), for \(x > 0 \).

(a) Find \(f'(x) \). [2]
(b) Find \(f''(x) \). [1]
(c) Solve \(f'(x) = f''(x) \). [4]

Question 8
May 2019 Maths SL Prediction Exams → Paper 1

[Maximum mark: 13]

A function \(f(x) \) has derivative \(f'(x) = 6x^2 - 24x \). The graph of \(f \) has an \(x \)-intercept at \(x = 1 \).

(a) Find \(f(x) \). [6]
(b) The graph of \(f \) has a point of inflexion at \(x = k \). Find \(k \). [4]
(c) Find the values of \(x \) for which the graph of \(f \) is concave-up. [3]

Question 9
May 2019 Maths SL Prediction Exams → Paper 1

[Maximum mark: 15]

The first two terms of an infinite geometric sequence are \(u_1 = 20 \) and \(u_2 = 16 \sin^2 \theta \), where \(0 < \theta < 2\pi \), and \(\theta \neq \pi \).

(a) (i) Find an expression for \(r \) in terms of \(\theta \). [5]

(ii) Find the possible values of \(r \). [5]

(b) Show that the sum of the infinite sequence is \(\frac{100}{3 + 2 \cos 2\theta} \). [4]

(c) Find the values of \(\theta \) which give the greatest value of the sum. [6]
A closed cylindrical can with radius r cm and height h cm has a volume of 24π cm3.

(a) Express h in terms of r.

The material for the base and top of the can costs 15 cents per cm2 and the material for the curved side costs 10 cents per cm2. The total cost of the material, in cents, is C.

(b) Show that $C = 30\pi r^2 + \frac{480\pi}{r}$.

(c) Given that there is a minimum value for C, find this minimum value in terms of π.

[Maximum mark: 15]