1a. Write down the range of \(f \).

Markscheme

correct range (do not accept 0 \(\leq x \leq 7 \)) \(A1 \ N1 \)

eg \([0, 7], 0 \leq y \leq 7\) \([1 \ mark] \)

1b. Write down \(f(2) \);

[1 mark]
1c. Write down $f^{-1}(2)$.

$\text{Markscheme}
\begin{align*}
 f(2) &= 3 & \text{A1 N1} \\
 [1 \text{ mark}]
\end{align*}$

1d. On the grid, sketch the graph of f^{-1}.

$\text{Markscheme}
\begin{align*}
 f^{-1}(2) &= 0 & \text{A1 N1} \\
 [1 \text{ mark}]
\end{align*}$
Notes: Award A1 for both end points within circles, A1 for images of (2, 3) and (0, 2) within circles, A1 for approximately correct reflection in $y = x$, concave up then concave down shape (do not accept line segments).

[3 marks]

Let $f(x) = 5x$ and $g(x) = x^2 + 1$, for $x \in \mathbb{R}$.

2a. Find $f^{-1}(x)$. [2 marks]

Markscheme

interchanging x and x (M1)

eg $x = 5y$

$f^{-1}(x) = \frac{x}{5}$ A1 N2

[2 marks]

2b. Find $(f \circ g)(7)$. [3 marks]
Markscheme

METHOD 1

attempt to substitute 7 into \(g(x) \) or \(f(x) \) \((M1)\)

\[eg \quad 7^2 + 1, \quad 5 \times 7 \]

\(g(7) = 50 \quad (A1) \)

\(f(50) = 250 \quad A1 \quad N2 \)

METHOD 2

attempt to form composite function (in any order) \((M1)\)

\[eg \quad 5(x^2 + 1), \quad (5x)^2 + 1 \]

correct substitution \((A1)\)

\[eg \quad 5 \times (7^2 + 1) \]

\[(f \circ g)(7) = 250 \quad A1 \quad N2 \]

[3 marks]

Let \(f(x) = x^2 - 1 \) and \(g(x) = x^2 - 2 \), for \(x \in \mathbb{R} \).

3a. Show that \((f \circ g)(x) = x^4 - 4x^2 + 3\). \([2 \text{ marks}]\)

Markscheme

attempt to form composite in either order \((M1)\)

\[eg \quad f(x^2 - 2), \quad (x^2 - 1)^2 - 2 \]

\[(x^4 - 4x^2 + 4) - 1 \quad A1 \]

\((f \circ g)(x) = x^4 - 4x^2 + 3 \quad AG \quad N0 \)

[2 marks]
3b. On the following grid, sketch the graph of \((f \circ g)(x)\), for \(0 \leq x \leq 2.25\). [3 marks]

Note: Award \textit{A1} for approximately correct shape which changes from concave down to concave up. Only if this \textit{A1} is awarded, award the following:
- \textit{A1} for left hand endpoint in circle \textbf{and} right hand endpoint in oval,
- \textit{A1} for minimum in oval.

[3 marks]
3c. The equation $(f \circ g)(x) = k$ has exactly two solutions, for $0 \leq x \leq 2.25$. Find the possible values of k. [3 marks]

Markscheme

- evidence of identifying max/min as relevant points \((M1)\)
 - eg $x = 0, 1.41421, y = -1, 3$
- correct interval (inclusion/exclusion of endpoints must be correct) \((A2)\) \((N3)\)
 - eg $-1 < k \leq 3, [-1, 3], (-1, 3)$

Let $f(x) = (x - 5)^3$, for $x \in \mathbb{R}$.

4a. Find $f^{-1}(x)$. [3 marks]

Markscheme

- interchanging x and y (seen anywhere) \((M1)\)
 - eg $x = (y - 5)^3$
- evidence of correct manipulation \((A1)\)
 - eg $y - 5 = \sqrt[3]{x}$
 - $f^{-1}(x) = \sqrt[3]{x} + 5$ (accept $5 + \frac{x}{3}, y = 5 + \sqrt[3]{x}$) \((A1)\) \((N2)\)

Notes: If working shown, and they do not interchange x and y, award $A1A1M0$ for $\sqrt[3]{y} + 5$.

If no working shown, award $N1$ for $\sqrt[3]{y} + 5$.

4b. Let g be a function so that $(f \circ g)(x) = 8x^6$. Find $g(x)$. [3 marks]
The following diagram shows the graph of a function f.

5a. Find $f^{-1}(-1)$.

5b. Find $(f \circ f)(-1)$.

The following diagram shows the graph of a function f.

5a. Find $f^{-1}(-1)$.

[2 marks]

5b. Find $(f \circ f)(-1)$.

[3 marks]
5c. On the same diagram, sketch the graph of \(y = f(-x) \). [2 marks]

Markscheme

Note: The shape must be an approximately correct shape (concave down and increasing). Only if the shape is approximately correct, award the following for points in circles:

\(A1 \) for the \(y \)-intercept,

\(A1 \) for any two of these points \((-5, -1), (-2, 1), (1, 2)\).

[2 marks]

Total [7 marks]
The following diagram shows the graph of
\[y = f(x), \text{ for } -4 \leq x \leq 5. \]

6a. Write down the value of \(f(-3) \). [1 mark]

Markscheme

\[f(-3) = -1 \quad A1 \quad N1 \]
[1 mark]

6b. Write down the value of \(f^{-1}(1) \). [1 mark]

Markscheme

\[f^{-1}(1) = 0 \quad \text{(accept } y = 0) \quad A1 \quad N1 \]
[1 mark]

6c. Find the domain of \(f^{-1} \). [2 marks]

Markscheme

domain of \(f^{-1} \) is range of \(f \) \(\text{(R1)} \)

eg \(\text{R}f = Df^{-1} \)

correct answer \(A1 \quad N2 \)

eg \(-3 \leq x \leq 3, \quad x \in [-3, 3] \quad \text{(accept } -3 < x < 3, \quad -3 \leq y \leq 3) \)
[2 marks]

6d. On the grid above, sketch the graph of \(f^{-1} \). [3 marks]
Note: Graph must be approximately correct reflection in \(y = x \).

Only if the shape is approximately correct, award the following:

\(A1 \) for \(x \)-intercept at 1, and \(A1 \) for endpoints within circles.

[2 marks]

The diagram below shows the graph of a function \(f \), for
\(-1 \leq x \leq 2 \).

7a. Write down the value of \(f(2) \). [1 mark]
7b. Write down the value of \(f^{-1}(-1) \).

\[f^{-1}(-1) = 0 \]

7c. Sketch the graph of \(f^{-1} \) on the grid below.
8a. Find $h(x)$.

Let
\[f(x) = 3x, \]
\[g(x) = 2x - 5 \]
and
\[h(x) = (f \circ g)(x). \]

8b. Find $h^{-1}(x)$.

Markscheme

attempt to form composite \((M1)\)
e.g. $f(2x - 5)$
\[h(x) = 6x - 15 \quad A1 \quad N2 \]

\([2 \text{ marks}]\)

[3 marks]
Markscheme

interchanging \(x \) and \(y \) \((M1)\)

evidence of correct manipulation \((A1)\)

e.g. \(y + 15 = 6x \), \(\frac{x}{6} = y - \frac{5}{2} \)

\(h^{-1}(x) = \frac{x+15}{6} \) \(A1 \) \(N3 \)

[3 marks]

Let \(f \) be the function given by

\[f(x) = e^{0.5x}, \]

\(0 \leq x \leq 3.5 \). The diagram shows the graph of \(f \).

9a. On the same diagram, sketch the graph of \(f^{-1} \). \([3 \text{ marks}]\)

Markscheme

\[A1A1A1 \quad N3 \]

Note: Award \(A1 \) for approximately correct (reflected) shape, \(A1 \) for right end point in circle, \(A1 \) for through \((1, 0)\).
9b. Write down the range of f^{-1}.

Markscheme

\[0 \leq y \leq 3.5 \quad A1 \quad N1 \]

[1 mark]

9c. Find $f^{-1}(x)$.

Markscheme

interchanging x and y (seen anywhere) \(M1 \)

e.g. $x = e^{0.5y}$

evidence of changing to log form \(A1 \)

e.g. $\ln x = 0.5y$, $\ln x = \ln e^{0.5y}$ (any base), $\ln x = 0.5y \ln e$ (any base)

\[f^{-1}(x) = 2 \ln x \quad A1 \quad N1 \]

[3 marks]